Медный сердечник в трансформаторе

Содержание
  1. Что представляет собой сердечник трансформатора?
  2. Зачем сердечник трансформатора делают из пластин?
  3. Почему сердечник называют магнитопроводом?
  4. Почему магнитопровод трансформатора Шихтованный?
  5. Для чего необходим сердечник?
  6. Почему сердечники трансформаторов изготовляют из отдельных пластин а не из сплошного куска металла?
  7. Почему сердечник не делают из целого куска и для чего его делают замкнутым?
  8. Что такое сердечник катушки?
  9. Что значит сердечник?
  10. Какую роль играет сердечник в катушке?
  11. Для чего и в каких случаях в конструкцию трансформатора входит магнитопровод?
  12. Для чего предназначен магнитопровод трансформатора?
  13. Для чего используется магнитопровод?
  14. Какую роль играет в трансформаторах стальной сердечник?
  15. ElectronicsBlog
  16. Выбор и параметры сердечника трансформатора
  17. Как выбрать тип трансформатора?
  18. Основные размеры трансформатора
  19. Функции геометрических параметров броневого трансформатора
  20. Функции геометрических параметров стержневого трансформатора
  21. Функции геометрических параметров тороидального трансформатора
  22. Выбор материала сердечника

Что представляет собой сердечник трансформатора?

Магнитопровод или сердечник трансформатора позволяет более эффективно преобразовывать напряжение, уменьшая при этом потери. Для изготовления сердечников используют специальную ферромагнитную сталь.

Зачем сердечник трансформатора делают из пластин?

Устройства собирать нужно из тонких и отдельных пластин сердечника — это уменьшает вихревые потери. Под действием на трансформатор магнитострикции они становятся деформированными, уменьшается коэффициент полезного действия, невозможно провести качественные расчеты мощности и иных технических характеристик.

Почему сердечник называют магнитопроводом?

Усилитель магнитного поля

Если возникает потребность в его усилении, применяются магнитопроводы. Также они называются сердечниками. … Магнитными свойствами обладают различные материалы. Наиболее эффективными усилителями электромагнитного поля являются материалы, именуемые ферромагнетиками.

Почему магнитопровод трансформатора Шихтованный?

Для улучшения работы пластинчатых магнитопроводов используют шихтованную сборку пластин. Ее принцип основан на четком распределении слоев и создании в нем одинаковых зазоров в стержне и ярме таким образом, чтобы при сборке все созданные полости заполнялись с минимальными стыками.

Для чего необходим сердечник?

Сердечник служит для трансформации то есть передачи магнитного поля с первичной обмотки на вторичную.

Почему сердечники трансформаторов изготовляют из отдельных пластин а не из сплошного куска металла?

— Почему сердечник трансформатора изготавливают из нескольких изолированных пластин, а не из цельного куска стали? Ответ: Сердечник трансформатора изготавливается с использованием изолированных пластин для уменьшения или практически полного исключения потерь, вызываемых протеканием вихревых токов.

№ 1353. Если его делать сплошным, то при подаче переменного тока в сердечнике будет переменное магнитное поле, которое приведет к электрическому полю. Если его сделать не сплошным, то этим мы будем препятствовать возникновению токов, уменьшим потери энергии. …

Что такое сердечник катушки?

магнитный сердечник катушки индуктивности — сердечник катушки Ндп. магнитопровод Деталь или сборочная единица из магнитного материала, предназначенная для сосредоточения в ней магнитного потока.

Что значит сердечник?

Сердечник (в электротехнике) — стержень, являющийся внутренней частью чего-либо, на который навивается, надевается что-либо (например, сердечник троса или электромагнита, либо каркас трансформатора или катушки, магнитопровод).

Какую роль играет сердечник в катушке?

Ферритовый сердечник — пассивный элемент, для подавления паразитных магнитных полей в трансформаторах или катушках индуктивности

Читайте также:  Установка трансформаторов без катков

Для чего и в каких случаях в конструкцию трансформатора входит магнитопровод?

Магнитопровод представляет собой магнитную систему трансформатора, по которой замыкается основной магнитный поток. Одновременно магнитопровод служит основой для установки и крепления обмоток, отводов, переключателей и других деталей активной части трансформатора.

Для чего предназначен магнитопровод трансформатора?

Магнитопровод или сердечник трансформатора позволяет более эффективно преобразовывать напряжение, уменьшая при этом потери. Для изготовления сердечников используют специальную ферромагнитную сталь.

Для чего используется магнитопровод?

Магнитопро́вод — деталь или комплект деталей, предназначенных для прохождения с определенными потерями магнитного потока, возбуждаемого электрическим током, протекающим в обмотках устройств, в состав которых входит магнитопровод.

Какую роль играет в трансформаторах стальной сердечник?

Магнитопровод (сердечник) в трансформаторах выполняют несколько функций. Самой главной является усиление и передача магнитного потока, то есть как провода являются проводниками для электрического тока, так и магнитопровод для магнитного потока.

Источник

ElectronicsBlog

Обучающие статьи по электронике

Выбор и параметры сердечника трансформатора

Всем доброго времени суток! В прошлой статье я рассказывал об определении габаритной мощности трансформатора РГ и об определении коэффициента заполнении окна kок трансформатора. Для выбора трансформатора этих данных недостаточно. Существенное влияние на его параметры оказывают заданные величины, например, напряжение, частота, режим и условия работы. Часто тип трансформатора, его сердечник и обмотки известны изначально, в противном случае их следует выбирать исходя из заданных условий.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Как выбрать тип трансформатора?

Тип трансформатора определяется конструкцией применяемого в нём сердечника. В настоящее время выпускается большое разнообразие сердечников в особенности ферритовых. Но среди них можно выделить три основных типа: стержневой (СТ), броневой (БТ) и тороидальный (ТТ). Остальные же являются, по сути, их модификацией с различными конструктивными особенностями.

Сделать однозначный выбор в пользу того или иного типа невозможно, так как каждый обладает своими достоинствами и недостатками и должен применяться в зависимости от назначения и предъявляемых к нему требований. К трансформаторам могут предъявляться следующие требования и их комбинация: массогабаритные, по стоимости, влияние собственных и внешних магнитных полей, конструктивные факторы и технологичность производства.


Основные типы конструкций сердечников трансформаторов: стержневой СТ, броневой БТ и тороидальный ТТ трансформаторы (слева направо).

При условии минимального падения напряжения (∆U) на промышленной частоте (50 Гц) наименьшим объемом обладает БТ, а весом – ТТ. Стержневые трансформаторы несколько уступают броневым (до 10%). При увеличении частоты, по весу – СТ улучшают свои параметры по сравнению с БТ, а по объему – ухудшаться. ТТ при возрастании частоты значительно улучшают массогабаритные показатели. Таким образом, при условии минимального падения напряжения при частоте 50 Гц рекомендуется применение броневых сердечников (БТ), а при повышении частоты следует использовать тороидальные сердечнике (ТТ), если вес и объем играет решающую роль.

Если ключевым требованием к трансформатору является постоянство рабочей температуры (∆T), то здесь рекомендации другие. При малой мощности БТ имеют преимущество, а в остальных случаях следует использовать СТ даже при повышенных частотах. Использование ТТ имеет смысл только на небольших мощностях особенно на повышенных частотах, так как с ростом мощности преимущества по массе и весу сглаживаются, а при больших мощностях (свыше сотен ватт) ТТ начинают уступать как СТ, так и БТ.

Читайте также:  Mc трансформатор или фонокорректор

В итоге можно сказать, что для трансформаторов небольшой мощности (до 50 Вт) рекомендуется применять БТ и ТТ, а на высоких частотах – ТТ. При мощностях более 50 Вт показатели СТ становятся лучше, чем у БТ, а при мощностях более 250 Вт лучше, чем у ТТ.

Если условием для проектирования трансформатора является наибольшее значение КПД, то на промышленной частоте (50 Гц) лучшие показатели у БТ и СТ в порядке убывания, а на повышенных и высоких – ТТ и БТ, также в порядке убывания. Также стоит отметить, что ТТ обладает наименьшим намагничивающим током, при прочих равных условиях.

На высоких частотах важную роль часто играют магнитные поля рассеяния и восприимчивость к внешним магнитным полям. В этом отношении лучшими показателями отличаются тороидальные трансформаторы (при равномерно распределённой обмотке по сердечнику), а также стержневые трансформаторы (при равном разделении обмотки между стержнями). Собственная емкость у ТТ достаточно высокая по сравнению с БТ и СТ.

С точки зрения технологичности наилучшими показателями обладают БТ и СТ. Из недостатков ТТ здесь можно выделить следующее: необходимость последовательного изготовления сердечника и катушки, а также низкая производительность намотки катушки.

Рекомендуемые области применения различных типов трансформаторов.

Вид трансформатора На штампованных сердечниках На ленточных сердечниках
Низковольтные Малой мощности (до 50 Вт) БТ БТ, СТ
Средней и большой мощности (более 50 Вт) 50 Гц БТ СТ
10 кГц БТ, ТТ ТТ, СТ
Высоковольтные (тысячи вольт) 10 кГц БТ, ТТ СТ, ТТ
С высоким потенциалом 10 кГц ТТ, БТ ТТ, СТ
При необходимости надёжного экранирования ТТ, СТ ТТ, СТ
Примечание. Первым указывается тип трансформатора, применение которого предпочтительней.

Основные размеры трансформатора

Геометрические размеры трансформатора в большинстве случаев являются определяющими для его технико-экономических показателей. Основными размерами катушки трансформатора являются её высота и ширина (толщина), ограниченные размерами сердечника. Для сердечника основными размерами будут: ширина стержня, несущего катушку а; толщина стержня b; ширина окна с и высота окна h.


Основные размеры сердечников трансформаторов разных типов.

В технических характеристиках на сердечники и литературе единицей измерения размеров, как правило, является миллиметры мм (mm).

Для упрощения расчётов и некоторой унификации сердечников в отечественной литературе и методиках расчёта был введен так называемый базовый размер. В качестве базового может быть взят один из основных размеров трансформатора. В большинстве случаев в качестве базового размера берётся ширина стержня а. Тогда геометрия сердечника описывается следующими соотношениями

Используя базовый размер а и безразмерные коэффициенты x, y, z можно выразить все геометрические характеристики трансформатора: длины, сечения, поверхности и объёмы. Например, сечение сердечника Sc = ab, а с учетом базового размера Sc = ya 2 . Объём броневого трансформатора БТ

а с учетом базового размера

Читайте также:  Трансформатор тбс3 04у3 характеристики

то есть геометрические параметры трансформатора с учётом базового размера выражаются формулами типа

где k – может иметь значение от 1 до 3, в зависимости от типа величины (1 – длины; 2 – площади, поверхности, сечения; 3 – объёмы);

φi – функция геометрической характеристики трансформатора, индекс «i» указывает конкретную характеристику.

Характеристика трансформатора Обозначение функции Обозначение характеристики
Длина средней магнитной линии φl lc= φla
Средняя длина витка катушки φw lw= φwa
Сечение сердечника (геометрическое) φs sc= φsa 2
Полное сечение (площадь) окна сердечника φok sok= φoka 2
Площадь поверхности охлаждения катушки φпк Пк= φпкa 2
Площадь поверхности охлаждения сердечника φпс Пс= φпсa 2
Объем, занимаемый катушкой φk Vk= φka 3
Объем, занимаемый сердечником φс Vс= φсa 3

Геометрические характеристики трансформатора и их функции.

Функции геометрии не имеют размерности, поэтому с их помощью проще проводить анализ различных типов трансформаторов.

Функции геометрических параметров броневого трансформатора

Итак, начнем c геометрических параметров броневого трансформатора:

— длина средней магнитной линии lc

— площадь сечения сердечника sc

— сечение окна сердечника sok

— площадь поверхности охлаждения катушки Пк

— площадь поверхности охлаждения сердечника Пс

— объем занимаемый катушкой Vk

— объем занимаемый сердечником Vc

Функции геометрических параметров стержневого трансформатора

Для геометрических параметров стержневого трансформатора функции имеют вид:

— длина средней магнитной линии lc

— площадь сечения сердечника sc

— сечение окна сердечника sok

— площадь поверхности охлаждения катушки Пк

— площадь поверхности охлаждения сердечника Пс

— объем занимаемый катушкой Vk

— объем занимаемый сердечником Vc

Функции геометрических параметров тороидального трансформатора

Ещё одним из основных типов трансформатора является тороидальный, для которого функции геометрии будут следующие:

— длина средней магнитной линии lc

— площадь сечения сердечника sc

— сечение окна сердечника sok

— площадь поверхности охлаждения катушки Пк

— площадь поверхности охлаждения сердечника Пс

— объем занимаемый катушкой Vk

— объем занимаемый сердечником Vc

Функции геометрических параметров φ­i широко используются для расчёта электромагнитных нагрузок трансформатора (плотности тока j и индукции В) и его электрического расчета.

Выбор материала сердечника

На данный момент разработано большое количество магнитных материалов, из которых изготавливают сердечники трансформаторов. Основными из них являются:

  1. Электротехнические стали используются на частотах до десятков кГц и имеют индукцию насыщения BS ≤ 2 Тл. На частоте 50 Гц применяется сталь толщиной 0,35 – 0,5 мм, а выше – толщиной 0,05 – 0,15 мм. Например, 3411, 3412, 3421, 3422 и т.д.
  2. Электротехнические сплавы используются на частотах до 100 кГц с индукцией насыщения до 1,5 Тл. Изготавливаются в виде ленты толщиной 0,05 – 0,1 мм. Например, 79НМ, 34НКМП и т.д.
  3. Ферриты применяются в широком диапазоне частот от единиц кГц до единиц МГц с индукцией насыщения до 0,5 Тл. Изготавливаются в виде сердечников различных типов. Например, 1500НМ3, 700НМ, N72, М33 и т.д.
  4. Магнитодиэлектрики имеют незначительную магнитную проницаемость до сотен единиц, а индукцию насыщения и рабочую частоту в широком диапазоне в зависимости от типа:

Источник

Оцените статью
Adblock
detector