Могут ли конденсаторы увеличить напряжение

Содержание
  1. Как конденсатор влияет на напряжение в блоке питания.
  2. Как правильно паять конденсаторы, чтобы увеличить емкость и напряжение
  3. Как соединить конденсаторы для увеличения емкости
  4. Процесс пайки конденсаторов
  5. Тема: Допустимое привышение максимального напряжения конденсаторов
  6. Допустимое привышение максимального напряжения конденсаторов
  7. Re: Допустимое привышение максимального напряжения конденсаторов
  8. Re: Допустимое привышение максимального напряжения конденсаторов
  9. Re: Допустимое привышение максимального напряжения конденсаторов
  10. Re: Допустимое привышение максимального напряжения конденсаторов
  11. Как соединить конденсаторы чтобы увеличить вольтаж
  12. Как увеличить емкость конденсатора: проверенный способ соединения, формула, типы подключений
  13. Электрическая емкость
  14. Параллельное соединение
  15. Последовательное включение конденсаторов
  16. Смешанный способ
  17. Сравнение различных вариантов
  18. Как соединить конденсаторы параллельным или последовательным соединением
  19. Последовательные и параллельные соединения конденсаторов
  20. Ряды номиналов ёмкостей конденсаторов

Как конденсатор влияет на напряжение в блоке питания.

Данная статья написана для новичков и для тех, кому интересно. Теории здесь не будет. На деле покажу, зачем нужен конденсатор.

Конденсатор это двухполюсник, который имеет определенную переменную либо постоянную емкость.

Он состоит из двух пластинчатых электродов разделенных диэлектриком. На этих пластинах накапливается электрический заряд разной полярности. Если подключить питание, то одна пластина зарядится положительно, а другая отрицательно.

Применяется конденсатор в электротехнике по разному, но самая главная его задача это именно накапливать электрический заряд и отдавать его в нагрузку.

Основная характеристика конденсатора это емкость, которая измеряется в фарадах. От емкости зависит, какое количество заряда он сможет накопить. Чем она больше, тем большее количество энергии он сможет отдать в нагрузку.

Для того чтобы посмотреть наглядно как работает конденсатор нужно воспользоваться осциллографом.

Если взять трансформатор и подключить его к сети 220, то на выходе диодного моста напряжение будет иметь следующую форму.

Как видно напряжение постоянно изменяет свое значение с частотой 100 герц, то есть 100 раз в секунду. Электроника при таком питании будет работать не стабильно, появятся помехи.

При подключении конденсатора напряжение выравнивается.

В тот момент, когда напряжение возрастает, конденсатор заряжается, а когда идет спад, то за счет этого заряда, оно поддерживается на одном уровне. Теперь можно запитывать от этого трансформатор все что нужно.

Лампочка, подключенная к трансформатору без конденсатора, потребляет 4 ампера.

Источник

Как правильно паять конденсаторы, чтобы увеличить емкость и напряжение

Очень часто при ремонте техники возникает необходимость заменить конденсаторы, но не всегда есть нужной емкости под рукой. В таком случае приходится идти на хитрость, соединять полярные конденсаторы плюсами, чтобы получить неполярные или просто соединять несколько конденсаторов в один, для получения нужной емкости.

Существует несколько способов соединения конденсаторов — последовательное и параллельное подключение. Если соединить конденсаторы параллельно, то их номиналы будут объединены. При последовательном подключении конденсаторов, результат будет прямо противоположный.

Рассмотрим, как паять конденсаторы, чтобы увеличить их емкость. Какие способы соединения конденсаторов есть, и что нужно учитывать.

Как соединить конденсаторы для увеличения емкости

Итак, существует параллельное и последовательное соединение конденсаторов. При параллельном подключении, емкость конденсаторов складывается, то есть, объединяется. Таким образом, если нужно получить один конденсатор на 7 мкФ, то нужно соединить два, на 6,8 мкВ и 200 нФ.

При последовательном соединении конденсаторов образуется общий номинал, делённый на сумму. Это значит, что соединять, таким образом, большие конденсаторы с конденсаторами меньшей емкости, нет смысла. Всегда, конденсаторы, которые идут, друг за другом, будут примерно равноценными по своему номиналу.

Таким образом, емкость последовательно подключённых конденсаторов в цепи не растёт, но значительно увеличивается напряжение. Поэтому последовательное подключение конденсаторов имеет место быть там, где нужно получить стабильную цепь, которая способна выдерживать большое напряжение.

Процесс пайки конденсаторов

Прежде чем впаять конденсатор его нужно проверить, не пробит ли он, набирает ли требуемую емкость. Для проверки конденсаторов можно использовать как специальный прибор, стоимость которого начинается от 500 рублей, так и обычный цифровой мультиметр.

При проверке конденсаторов мультиметром, достаточно включить прибор в измерение сопротивления, после чего прикоснуться его щупами к выводам конденсатора. При этом на экране мультиметра побегут цифры, а затем высветится единица. Данные цифры означают, что конденсатор набирает свою емкость, а, следовательно, он исправен.

Перед тем как впаять конденсатор, нужно вставить его ножки в посадочные гнезда, обязательно соблюдая полярность, если только это неполярный конденсатор. Обычно плюсовая ножка конденсатора длиннее, чем минусовая. Также сбоку на корпусе конденсатора, где минусовой вывод можно увидеть соответствующее обозначение.

Читайте также:  Как проверить импульсное напряжение мультиметром

Паяются конденсаторы с обратной стороны платы. После установки ножек в посадочные гнезда, припой подносится к месту пайки и расплавляется паяльником, образуя собой «пятачки». Таким образом, поочерёдно припаиваются обе ножки конденсатора, лишние части которых затем откусывают при помощи острых кусачек.

Перепаять конденсатор намного проще, чем микросхему. Однако и в этом деле есть свои определённые нюансы. Обучаться методам пайки лучше всего именно на замене вздутых или пробитых конденсаторов.

Источник

Тема: Допустимое привышение максимального напряжения конденсаторов

Опции темы

Допустимое привышение максимального напряжения конденсаторов

Заявилась такая проблемка: транс мотал на чуть большее напряжение, чем надо (учитывая падение на диодах), расчитывалось получить 15-16 вольт, вышло 16.5-17 вольт. Конденсаторы Jamicon, 16 вольт. Вопрос в том, можно ли привышать допустимое напряжение конденсаторов? И если да, то на сколько?

P.S. До кучи вопросец: сколько раз мерил напряжение, каждый раз оно разное. От ЛАТРа (ровно 220) 16,5 вольт, потом там же в розетку воткнул — 17 вольт (в сети 232). Дома попробовал — цифровой показывает 16.16 (в сети 225 и цифрой и аналоговым). Потом попробовал аналоговым — 15 вольт (цифровым — 15,96). Сейчас попробовал (аналоговым) — 15.5. Отчего напряжение плавает?

Re: Допустимое привышение максимального напряжения конденсаторов

Диоды КД213А
Конденсаторы Jamicon 4700мкф, 16В (3шт.)

P.S. Опять померял. Цифровой сказал 16.18, аналоговый 15.3.

Re: Допустимое привышение максимального напряжения конденсаторов

Eclipse, Обычно испульзуется 25% допуск+округление в большую сторону.
То есть при 15-16 вольт,тебе уже нужно 25 вольтовые ставить.

Re: Допустимое привышение максимального напряжения конденсаторов

Нужно смотреть в datasheet, там для каждого номинала и типа указано максимальное напряжение. Как раз недавно смотрел в связи с вопросом по диодам

В сети напряжение стабильностью величины и формы не отличается

Re: Допустимое привышение максимального напряжения конденсаторов

Ну это понятно, но конденсаторы уже есть, а покупать другие пока не вижу особого смысла. Напряжение получается 16 +-0.2 вольта. На сколько сокращается ресурс при максимальном напряжении? При привышенном (например, на вольт)?

Добавлено через 57 секунд
Скиф, так максимальное напряжение указано на обкладке или я ошибаюсь?

Последний раз редактировалось Eclipse; 26.03.2009 в 21:38 . Причина: Добавлено сообщение

Источник

Как соединить конденсаторы чтобы увеличить вольтаж

Как увеличить емкость конденсатора: проверенный способ соединения, формула, типы подключений

Если нужно срочно отремонтировать технику, а нужного конденсатора нет, то можно увеличить емкость конденсатора, как известно из школьной программы, соединив несколько приборов в одну цепь.

Такая проблема может также возникнуть, если, например, нужного номинала нет в продаже, то есть для нестандартных подключений, например, в радиотехнических опытах.

Электрическая емкость

При соединении приборов для конденсации заряда, как правило, техника интересует электрическая емкость, которая получится в итоге.

Электроемкость показывает способность двухполюсника накапливать в себе заряд и измеряется в фарадах. Может показаться, что чем выше это значение, тем лучше, но на практике не существует возможности создать все возможные на свете емкости, более того, часто это и не нужно, так как во всех приборах, использующихся повседневно, применяются стандартные приборы для конденсации.

Можно соединить несколько приборов для конденсации в цепь, создав одну конденсирующую емкость, при этом значение характерной величины будет зависеть от типа подключения, и для его расчета есть давно известные формулы.

Параллельное соединение

Существует два типа подключения приборов в цепь: последовательное и параллельное. Каждый из них обладает своими свойствами, но, как правило, используется параллельное соединение конденсаторов.

Параллельное соединение обладает такими свойствами:

  1. Емкость составного двухполюсника увеличивается по сравнению с каждым отдельным прибором.
  2. Напряжение в сети не изменяется.

Соединить конденсаторы для увеличения емкости, как показывают свойства, лучше этим способом. Для этого нужно соединить выводы с каждого двухполюсника по группам: у каждого из них два вывода. Нужно создать две группы: в одну соединить все конденсаторы с одного вывода, а во вторую с оставшегося.

Читайте также:  Трансформатор напряжения нами 220 характеристики

При таком соединении приборы для конденсации образуют одну емкость, поэтому верна такая формула: С=С1+С2+СN, где N — количество конденсаторов в цепи.

Например, если имеются номинальные значения 50мкф, 100мкф и 150мкф, то при последовательном подключении общее значение в цепи будет 300мкф.

В жизни это подключение используют довольно часто, например, если при расчетах оказалось, что требуется такой двухполюсник, которого в продаже точно не найти. С помощью этого способа можно варьировать емкость конденсатора так, как это потребуется, при этом не изменяя напряжение в сети.

Последовательное включение конденсаторов

Свойства последовательного включения конденсаторов:

  1. Емкость последовательно соединенных приборов для конденсации заряда в отличие от емкости параллельно соединенных конденсаторов уменьшается.
  2. Напряжение на приборах растет.

Для такого подключения нужно просто соединять выводы двухполюсников один с другим, образуя цепочку: вывод первого будет соединен с выводом второго, оставшийся вывод второго с выводом третьего и так далее.

Формула подключения: 1/(1/С1+1/С2++1/СN), где N — это количество приборов в соединении.

Например, есть три конденсатора по 100мкф. 1/100+1/100+1/100=0,03мкф. 1/0,03=33мкф.

Заряды распределятся с чередующимся знаком, а емкостное значение будет ограничено только им же для самого слабого звена в цепи. Как только он получит свой заряд, передача тока в цепи прекратится.

Для чего тогда нужен подобный способ подключения? Такая цепь более устойчива и может выдержать большее напряжение при подключении в схему при меньшем емкостном номинале конденсатора. Однако в продаже имеются приборы, которые и без того обладают нужными свойствами, поэтому-то такое подключение в жизни практически не используется, а если используется, то для специфических задач.

Смешанный способ

Сочетает в себе параллельное и последовательное подключения.

При этом для участков с последовательным соединением характерны свойства последовательного соединения, а для участков с параллельным — свойства параллельного.

Оно используется, когда ни электроемкость, ни номинальное напряжение приборов, имеющихся в продаже, не подходят для задачи. Обычно такая проблема возникает в радиотехнике.

Чтобы определить общее значение электроемкости, нужно будет сначала определить это же значение для параллельно соединенных двухполюсников, а потом для их последовательного соединения.

Сравнение различных вариантов

Емкость Напряжение
Параллельное Увеличивается Не изменяется
Последовательное Уменьшается Увеличивается
Смешанное Изменяется Увеличивается

Для выбора соединения можно воспользоваться такой таблицей. Слева тип соединения приборов, сверху свойства прибора для конденсации заряда.

Если требуется увеличить емкость, то нужно использовать параллельное соединение, а если увеличить напряжение — то последовательное. Если же требуется и то, и то, то нужно будет рассчитывать смешанное подключение конденсаторов в цепь.

Как соединить конденсаторы параллельным или последовательным соединением

Умельцы, собирая прибор, часто задумываются, как соединить конденсаторы параллельным или последовательным соединением. Далеко не любой номинал выпускается промышленностью, задача обеспечить конструкцию связкой ёмкостей встречается повсеместно.

При параллельном включении номиналы складываются, а при последовательном используется более сложная формула. Вдобавок конденсаторы бывают подстроечными, подобные совершенно точно включаются в цепи, где требуется обеспечить нужные резонансные характеристики.

И тоже требуется решить указанную выше задачу.

Последовательные и параллельные соединения конденсаторов

При параллельном соединении конденсаторов их ёмкости складываются. Несложно посчитать нужный номинал. Допустим, требуется 7 мкФ, но промышленность подобные конденсаторов не выпускает. Зато присутствуют на 6,8 мкФ и 200 нФ. Их сложением образуется связка в искомые 7 мкФ. Заводские номиналы специально выбраны так, чтобы создать любые значения.

Когда применяется последовательное соединение конденсаторов, результирующее значение номинала определяется как произведение ёмкостей, делённое на их сумму.

К примеру, если поставить друг за другом две одинаковые ёмкости, суммарный конденсатор заработает номинал, равный половине исходных. Когда складываются различные конденсаторы, больший вклад вносит именно меньший.

Бессмысленно последовательно соединять мощные ёмкости со слабыми. Конденсаторы, идущие друг за другом, по номиналу выбираются приблизительно равноценные.

Возникает вопрос – зачем использовать последовательное соединение. В физике часто рассматривается тема, но не говорится, зачем уменьшать ёмкость конденсаторов. Ведь цена конструкции от этого увеличивается, массу сложностей представляет расчёт режима. Причина в практической стороне. В обзорах уже писали, что рабочее напряжение конденсатора сильно зависит от типа диэлектрика и толщины его слоя. Повысить указанный параметр проблематично.

Читайте также:  Что такое коэффициент пропорциональности для напряжения

Тогда требуется составить последовательное соединение конденсаторов, при котором напряжение между ними разделится пропорционально номиналам ёмкостей: чем меньше фарад, тем больше приложится. Импеданс элементов находится по формуле R =j 1/W C, где W – круговая частота цепи (f х 2 П; 6,28 f). Литера j означает, что сопротивление ёмкости переменному току носит мнимый характер (хотя, в отличие от идеала, считается комплексным числом из-за потерь на обкладках и прочих явлений).

Рассмотрим, как проявится конденсатор в цепи постоянного тока. Ёмкости заполнятся зарядами, а напряжение поделится между элементами, обратно пропорционально ёмкостям составляющих цепь элементов. Представьте ситуацию, когда разница потенциалов в цепи явно превышает рабочую. Потребуется набрать последовательную цепь из конденсаторов с пониженным рабочим напряжением, пожертвовав величиной ёмкости.

Порой выгодным оказывается смешанное соединение конденсаторов. Допустим, часть номинала набрать параллельным включением, а остальные элементы предназначены для работы с более низким напряжением. Тогда пробуем набрать из последних последовательную ветку нужного размера в фарадах.

Ряды номиналов ёмкостей конденсаторов

Известны ряды стандартных номиналов конденсаторов: Е3, Е6, Е12, Е24. После войны 45-го года, когда страны сели за стол переговоров, выяснилось, что у собеседников присутствует два основных стандарта на ряду ёмкостей. Смысл заключался в возможности набрать любой номинал из составляющих путём параллельного соединения.

Оказалось, что это делается двумя способами:

  1. Взять ряды, где любое значение равняется корню десятой степени из возведённой в некоторую степень десятки. Такой ряд пропорционален единому значению: корню десятой степени из десятки.
  2. Второй ряд использовал аналогичные соотношения, но корень брался в двенадцатой степени. Поясним с точки зрения математики. Стандартно обращаемся к квадратному корню. Что соответствует степени 2. К примеру, корень из 9 равняется 3. Кубический корень – число, возводимое в третью степень, чтобы вышло подкоренное выражение. К примеру, кубический корень из 27 также равняется 3.

Теперь читатели понимают, что ряды стандартных номиналов конденсаторов сложны. Итак, выяснилось, что часть стран уже использует вторую методику, но теоретически большую выгоду несёт первая. В угоду неким условиям решили применять именно корень двенадцатой степени. Туда входит ряд конденсаторов Е12. Все его значения пропорциональны степеням десятки, над которыми произведена указанная математическая операция. На практике это выглядит, как 1, 1,2, 1,5, 1,8 и пр.

Прочие ряды кратны этому. Там корень берётся, соответственно, третьей, шестой, двадцать четвертой, сорок восьмой, девяносто шестой и даже сто девяносто второй степеней. В результате образуются стандартные ряды. Установлены собственные допуски номиналов конденсаторов. К примеру, для:

  • Е12 плюс минус 10%.
  • Е24 плюс минус 5%.
  • Для допусков жёстче 5% применяются ряды Е48 и выше.

Со снижением степени корня растёт расстояние между номиналами. Поэтому для перекрытия всего диапазона и допуски следует взять менее жёсткие. На практике, как говорили ранее в обзорах, номинал постепенно выходит за указанные рамки.

Люди измеряют реальное значение тестером и продолжают пользоваться изделием на собственный страх и риск.

Стоит заметить, что в рядах Е48 и Е96 исключены чётные члены (чётные степени числа десять под корнем), а в Е192 впервые появляются отрицательные значения (к примеру, 10 в степени минус один).

Приведённая информация позволит читателям лучше понять смысл маркировки конденсаторов, чтобы правильно набрать нужные последовательные и параллельные цепочки. Вдобавок ясно, какие номиналы искать с тем либо иным допуском, либо таковых нет в природе.

Со времени съезда 1948 года в Стокгольме в большинстве стран номиналы конденсаторов унифицированы. Поэтому американские ёмкости полностью годятся для российских условий.

Лишь сетевое напряжение за океаном показывает иной номинал, предлагается проявлять осторожность.

Ряд рабочих напряжений также прописан в ГОСТ 28884, как и номиналы. Причём учтены интересы всех стран. Допустим, для сетевых фильтров в Российской Федерации подойдут конденсаторы на 250 В, для Соединённых Штатов Америки уместны изделия с номиналов на 127 В. Ряды постоянных напряжений изолированы.

В блоках питания, к примеру, значение зависит от типа выпрямителя (однополупериодный, двухполупериродный и пр.).

Нужно учитывать, что большинство конденсаторов в подобных цепях находится под удвоенной нагрузкой (к примеру, в блоке питания персонального компьютера напряжение на обкладках достигает 600 В).

Источник

Оцените статью
Adblock
detector