Мощность пропорциональна квадрату напряжения

Работа и мощность электрического тока. Закон Джоуля-Ленца

1. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу, и электрическая энергия превращается в другие виды энергии: во внутреннюю, механическую, энергию магнитного поля и пр.

Как было показано, напряжение ​ \( (U) \) ​ на участке цепи равно отношению работы ​ \( (F) \) ​, совершаемой при перемещении электрического заряда ​ \( (q) \) ​ на этом участке, к заряду: ​ \( U=A/q \) ​. Отсюда ​ \( A=qU \) ​. Поскольку заряд равен произведению силы тока ​ \( (I) \) ​ и времени ​ \( (t) \) ​ ​ \( q=It \) ​, то ​ \( A=IUt \) ​, т.е. работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.

Единицей работы является джоуль (1 Дж). Эту единицу можно выразить через электрические единицы:

Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы, однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.

Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: ​ \( A=\fract \) ​ или ​ \( A=I^2Rt \) ​.

2. Мощность электрического тока равна отношению работы ко времени, за которое она совершена: ​ \( P=A/t \) ​ или ​ \( P=IUt/t \) ​; ​ \( P=IU \) ​, т.е. мощность электрического тока равна произведению напряжения и силы тока в цепи.

Единицей мощности является ватт (1 Вт): ​ \( [P]=[I]\cdot[U] \) ​; ​ \( [P] \) ​ = 1 А · 1 В = 1 Вт.

Используя закон Ома, можно получить другие формулы для расчета мощности тока: ​ \( P=\frac;P=I^2R \) ​.

Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра, измерив соответственно силу тока и напряжение. Можно для измерения мощности использовать специальный прибор, называемый ваттметром, в котором объединены амперметр и вольтметр.

3. При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: ​ \( Q=A \) ​ или ​ \( Q=IUt \) ​. Учитывая, что ​ \( U=IR \) ​, ​ \( Q=I^2Rt \) ​.

Количество теплоты, выделяющееся при прохождении тока но проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени.

Этот закон называют законом Джоуля-Ленца.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​ \( R_1 \) ​ в четыре раза меньше сопротивления резистора ​ \( R_2 \) ​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​ \( R_1 \) ​ в 3 раза больше сопротивления резистора ​ \( R_2 \) ​. Количество теплоты, которое выделится в резисторе 1

Читайте также:  Катушка электромагнитная для клапана напряжение 24в dc 13вт

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​ \( A_1 \) ​ и ​ \( A_2 \) ​ в этих проводниках за одно и то же время.

1) ​ \( A_1=A_2 \) ​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) ​ и ​ \( A_2 \) в этих проводниках за одно и то же время.

1) ​ \( A_1=A_2 \) ​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Источник

Мощность пропорциональна квадрату напряжения

Сайт преподавателя КПК:
Информационные технологии, Компьютерная графика, Физика

Напряжение измеряют вольтметром (V), а ток через нагрузку (R) — амперметром (A).

Чем быстрее выполняется работа, тем больше мощность исполнителя.

Мощная машина разгоняется быстрее. Мощный (сильный) человек способен быстрее затащить мешок картошки на девятый этаж.

1 Ватт — мощность, позволяющая совершить работу в 1 Дж за одну секунду (что такое джоуль описывалось выше).

Если Вы способны разогнать двухкилограммовое тело до скорости 1 м/с за одну секунду, значит, развиваете мощность 1 Вт.

Если Вы поднимаете килограммовый груз на высоту 0,1 метра за секунду, Ваша мощность равна 1 Вт ибо груз приобретает за секунду потенциальную энергию в 1 Дж.

Если уронить с одинаковой высоты одну тарелку на бетонный пол, а вторую на одеяло, первая наверняка разобьется, а вторая выживет. В чем разница? Начальные и конечные условия одинаковые. Тарелки падают с одной и той же высоты, стало быть, обладают одинаковой энергией. На уровне пола обе тарелки останавливаются — вроде все идентично. Разница лишь в том, что энергия, которую тарелка накопила в процессе полета, в первом случае выделяется мгновенно (очень быстро), а когда тарелка падает на одеяло или ковер, процесс торможения растягивается во времени.

Читайте также:  Напряжение питания микрофона сотового телефона

Пусть падающая тарелка обладает кинетической энергией в 1Дж. Процесс столкновения с бетонным полом занимает, допустим, 0,001 сек. Получается, что мощность, выделяемая при ударе, равна 1/0,001=1000 Вт!

Если же тарелка плавно замедляется в течение 0,1 сек, мощность будет 1/0,1=10 Вт. Уже есть шанс выжить — если на месте тарелки окажется живой организм.

Для того и существуют зоны деформации и подушки безопасности в автомобилях, чтобы растянуть во времени процесс выделения энергии при аварии, т.е., снизить мощность при ударе. А выделение энергии, между прочим и есть работа. В данном случае, работа по разрыву ваших внутренних органов и ломанию костей.

Вообще, работа — это процесс преобразования одного вида энергии в другой.

Еще пример: можно без последствий сжечь содержимое баллона с пропаном в горелке. Но если смешать газ, содержащийся в баллоне с воздухом и воспламенить, произойдет взрыв.

В обоих случаях выделяется одинаковое количество энергии. Но во втором энергия выделяется за короткий промежуток времени. А мощность — отношение количества работы ко времени, за которое она сделана.

Касаемо электричества, 1 Вт — мощность, выделяемая на нагрузке, когда произведение тока через нее и напряжения на его концах равно единице. То есть, например, если ток через лампу равен 1 А, и напряжение на ее выводах равно 1 В, мощность, выделяемая на ней 1 Вт.

Такая же мощность будет у лампы с током 2 А при напряжении на ней 0,5 В — произведение этих величин тоже равно единице.

P = U*I. Мощность равна произведению напряжения и силы тока .

I = P/U — сила тока равна мощности, деленной на напряжение.

Есть, допустим, лампа накаливания. На ее цоколе указаны параметры: напряжение 220 В, мощность 100 Вт. Мощность 100 Вт означает, что произведение напряжения, прикладываемое к ее выводом, умноженное на ток, протекающий через эту лампу равно ста. U*I=100.

Какой ток через нее будет протекать? Элементарно, Ватсон: I = P/U, делим мощность на напряжение (100/220), получаем 0,454 А. Ток через лампу 0,454 ампер. Или, иначе, 454 миллиампер (милли — тысячная доля).

Еще один вариант записи U = P/I. Тоже где-нибудь пригодится.

Теперь мы вооружены двумя формулами — законом Ома и формулой мощности электрического тока. А это уже инструмент.

Мы хотим узнать сопротивление нити накала той же стоваттной лампы накаливания.

Закон Ома говорит нам: R = U/I.

Можно не высчитывать ток через лампу, чтобы подставить его потом в формулу, а пойти коротким путем: так как I = P/U, подставляем P/U вместо I в формулу R = U/I.

В самом деле, почему бы ток (который нам неизвестен) не заменить напряжением и мощностью лампы, (которые указаны на цоколе).

Итак: R = U/P/U, что равно U^2/P. R = U^2/P. 220 (напряжение) возводим в квадрат и делим на сто (мощность лампы). Получаем сопротивление 484 Ом.

Можно проверить вычисления. Выше мы таки считали ток через лампу — 0,454 А.

R = U/I = 220/0,454 = 484 Ом. Как ни крути, верный вывод один.

Еще раз, формула мощности: P = U*I (1), или I = P/U (2), или U = P/I (3).

Закон Ома: I = U/R (4) или R = U/I (5) или U = I*R (6).

В любой из этих формул, вместо неизвестного значения можно подставить известные.

Если в нужно узнать мощность, имея значения напряжения и сопротивления, берем формулу 1, вместо тока I подставляем его эквивалент из формулы 4.

Получается P = U^2/R. Мощность равна квадрату напряжения, деленному на сопротивление. То есть, при изменении напряжения, приложенного к сопротивлению, выделяемая на нем мощность меняется в квадратичной зависимости: подняли напряжение в два раза, мощность (для резистора — нагрев) увеличилась в четыре раза! Так говорит нам математика.

Понять почему это происходит на практике, поможет опять-таки гидравлическая аналогия. Предмет, находящийся на некоей высоте, обладает потенциальной энергией. И, спускаясь с этой высоты, он может совершить работу. Так совершает работу по выработке энергии вода в гидроэлектростанции, опускаясь через гидротурбину с уровня водохранилища до нижнего бьефа (нижнего уровня).

Читайте также:  Напряжение двигателя пылесоса самсунг

Потенциальная энергия предмета зависит от его массы и от высоты, на которой он находится (тем больше бед наделает падающий камень чем больше он весит, и с чем большей высоты он падает). Также имеет значение сила тяжести в месте его падения. Один и тот же камень, падающий с одинаковой высоты более опасен на Земле , нежели на Луне, так как на Луне «сила тяжести» (сила, тянущая камень вниз) меньше земной в 6 раз. Итак, у нас три параметра, влияющих на потенциальную энергию — масса, высота и сила тяжести. Именно они и содержатся в формуле кинетической энергии:

где m — масса предмета, g — ускорение свободного падения в данном месте («сила тяжести»), h — высота, на которой находится предмет.

Соберем установку: насос с приводом от двигателя будет качать воду из нижнего резервуара в верхний, а стекающая под действием силы тяжести из верхнего резервуара вода, будет крутить генератор:

Понятно, что чем выше водяной столб, тем большей энергией будет обладать вода. Увеличим высоту столба в два раза. Понятно, что при удвоенной высоте h, вода будет обладать вдвое большей потенциальной энергией, и, вроде бы, мощность генератора должна возрасти вдвое? На самом деле, его мощность увеличится в четыре раза. Почему? Потому что из-за удвоенного давления сверху, поток воды через генератор удвоится. И удвоенный поток воды при удвоенном же давлении, приведет к четырехкратному увеличению мощности, выделяемой на генераторе: в два раза больше, и в два раза сильнее.

То же самое происходит на сопротивлении, при удвоении приложенного к нему напряжения. Мы же помним формулу мощности, выделяемой на резисторе?

Мощность P равна произведению напряжения U, приложенного к резистору и тока I, протекающего через него. При удвоении приложенного напряжения U, мощность, вроде как должна удвоится. Но ведь повышение напряжения ведет и к пропорциональному росту тока через резистор! Стало быть, удвоится не только U, но и I. Именно поэтому, мощность зависит от приложенного напряжения в квадратичной зависимости.

Батарея с удвоенным напряжением «закачивает» электроны на вдвое большую «высоту», и это приводит точно к такой же картине, как в гидравлическом аналоге.

Нужно узнать мощность, зная сопротивление и ток, но не зная напряжение? Нет проблем. В ту же первую формулу вместо U подставляем эквивалент U из формулы 6. Получаем P = I^2*R. Мощность равна квадрату тока, умноженному на сопротивление.

Приведенный выше гидравлический аналог поможет понять, почему. Удвоение тока через данный резистор возможно только при удвоении приложенного к нему напряжения. А стало быть, формула P = U*I, сработает и тут, несмотря на отсутствие в формуле P = I^2*R напряжения. Просто напряжение в данном случае присутствует «за кадром», прячась за другими переменными.

Еще одна странность данной формулы — мощность прямо пропорциональна сопротивлению. Разве так может быть? Ну давайте тогда вообще разорвем цепь, сопротивление возрастет до бесконечности, а значит, соответственно вырастет мощность, выделяемая на том, чего нет? Бред какой.

На самом деле все просто. Рост сопротивления приведет к соответствующему уменьшению тока через резистор. Если в формуле

сопротивление R увеличить вдвое, то ток I уменьшится вдвое. А зависимость мощности от тока в этой формуле — квадратичная. Стало быть, мощность выделяемая на резисторе ожидаемо упадет в два раза.

И так далее. В любых комбинациях. Зная любые два параметра из четырех: напряжение, ток, сопротивление, мощность, можно узнать все остальные.

Напряжение (U) — это «разность электрического давления» между какими-либо двумя точками электрической цепи (аналог разности давлений жидкости). Единица измерения — вольт.

Ток (I) — это количество электронов, проходящих через участок цепи (аналог потока жидкости). Единица измерения — ампер. 1 А = 1 Кл/сек.

Сопротивление (R) — способность участка цепи мешать (сопротивляться) перемещению электронов (как узкое место или засор в трубе). Единица измерения — ом.

Мощность (P) — это произведение напряжения и тока (как если бы мы умножили расход воды через какой либо участок водопровода на разность давлений на концах этого участка). Единица измерения — ватт.

Источник

Оцените статью
Adblock
detector