Может ли сгореть предохранитель от перепада напряжения

Может ли сгореть предохранитель от перепада напряжения

Статья написана для постигающих азы в ремонте.

Сгорел входной предохранитель в блоке питания? Разберемся в причинах и как правильно проводить диагностику. Также затронем пару сопутствующих тем при анализе этой неисправности.

Думаю многие сталкивались с такой ситуацией когда включаем устройство но нет никакой реакции, и после непродолжительной диагностики выявляем сгоревший сетевой предохранитель. Причем неважно БП компьютера это или плата питания копира или факса. Естественно многие его сразу меняют или что еще хуже ставят перемычку и тут же включают устройство. И вот тут то с большей долей вероятности он сгорит снова или выбьет автоматы в щитке. Давайте разберемся подробнее в чем же дело и почему нельзя менять предохранитель без диагностики.

Сначала взглянем на типовую схему входа в импульсных блоках питания.

Как видим предохранитель FU1 стоит первым в цепи, и основная его функция защитная. Но, это защита не внутренних компонентов схемы от превышения напряжения, а защита всей платы от короткого замыкания этих самых компонентов, и в конечном итоге предотвращение воспламенения внутри устройства.

Поэтому когда сгорает сетевой предохранитель во входной цепи, то это означает не то что было превышение питающего напряжение, а короткое замыкание в цепи после предохранителя. И как правило в 80% случаев если восстановить цепь вставив новый пред, и замерив сопротивление на входе блока между контактами L и N то обнаружим сопротивление равное нулю или чуть более.

Сгоревший предохранитель это следствие, поэтому как только обнаружили что он неисправен приступаем к диагностике.

Диагностику начинаем от входа, первым в списке стоит варистор VR1, выглядят они в целом виде так:

Вот они как раз и выполняют функцию защиты блока питания об бросков напряжения. Суть их в том что при превышение определенного порога напряжения они начинают пропускать через себя ток, защищая остальной участок цепи. При возможны несколько вариантов событий:

1.Импульс входного напряжения был незначительный и варистор сработав поглотил его рассеяв в тепло, потому в даташитах на них и указывается какую мощность они могут принят.

2. Импульс входного напряжения был более сильным, и варистор сработав замкнув цепь привел к образованию повышенного тока протекающего через предохранитель, который выгорел. При этом варистор пробит не был, и остался функционирующим. В таком случае замена сетевого предохранителя восстановит работоспособность.

3. Длительное превышение напряжения. При таком раскладе происходит тепловой пробой варистора приводящий к короткому замыканию цепи. Как правило это можно увидеть невооруженным взглядом в виде раскола, почернение и так далее.

Но дефект может быть и скрытым, поэтому если в цепи КЗ, то выпаиваем его в первую очередь и проверяем. Если дефект в нем, то тут у нас выбор, не впаивать его обратно совсем, на работоспособность схемы это не повлияет, но в следующий раз сгорит уже что-то другое, и замена на аналог. Советую всегда ставить новый.

К сожалению варисторы стоят не во всех блоках питания. Стоит также отметить что расположен в схеме он может как до дросселей, так и после, а обозначаться может как угодно.

Смотрим дальше:
Конденсаторы С1 и С4 служат для подавления низкочастотных дифференциальных помех, с емкостью порядка сотен нанофарад и напряжением от 250 вольт. На схеме может обозначаться как Сх, и иметь прямоугольный вид. По своему типу пленочный, и практически никогда не выходит из строя. Но проверить все же стоит.

Читайте также:  Реле напряжения механическое или электронное

Дроссель Т1 — служит для подавления синфазных помех. Несмотря на то что обмотки могут находится на одном магнитопроводе, обмотки фаз разнесены друг от друга на расстоянии, и замыкания быть не должно. Но может произойти обрыв обмоток. В таком случае это однозначно говорит о коротком замыкании в цепи дальше.

Конденсаторы С2 и С3 также выполняют роль фильтра синфазных помех. Пробои случаются, но выглядит это несколько иначе, так как в общей точке они соединены с корпусов устройства, то при отсутствии заземления при прикасании к металлическим частям корпуса будет чувствоваться удар током.
Термистор Т — выполняет функцию ограничения стартового тока при включении устройства в сеть. Суть термистора в том что в обесточенном блоке питания и при нормальной температуре он имеет высокое сопротивление, при подаче напряжения происходит нагрев термистора и уменьшение его сопротивления до нуля. Таким образом происходит плавный запуск блока питания.

И так, мы рассмотрели основные элементы так называемого входного фильтра, но стоит учитывать что это только примерная схема, различные производители могут видоизменять ее, так например отказ от конденсаторов, замена дросселей на перемычки, отсутствие варисторов и термисторов. В некоторых устройствах наоборот может наблюдаться усложнение, в виде добавочных варисторов между землей и фазой. При проверке элементов на пробой обязательно выпаиваем их, проверять в схеме на короткое замыкание бессмысленно.

Теперь перейдем к следующему компоненту:

Диодный мост D1-D4. По статистике причиной кз во входной цепи держит лидирующее место. При этом он может быть выполнен как в виде четырех отдельных диодов, так и в виде сборки.

Проверять в схеме не имеет смысла, поэтому выпаиваем и смотрим наличие пробоя, также проверяем падение напряжения в норме от 400 до 600, но точная информация в даташитах на них. Главное чтобы эти значения не отличались для каждого диода или перехода в сборке более чем на несколько единиц. Причин выхода из строя диодного моста может быть как пробой вследствие превышения напряжения или тока, и деградация np-перехода от времени.

В цепи после диодного выпрямителя расположен сетевой конденсатор С5, с напряжением обычно 400 вольт и емкостью от 40 до 200 мкф. Он так же может служить причиной короткого замыкания по причине пробоя между обкладками. Для проверки его также требуется выпаять из схемы, и следует проявить осторожность, так как исправный конденсатор может долго хранить заряд. Для проверки уже нужен специальный прибор LC-метр. Предварительно разрядив конденсатор проверяем его емкость и ток утечки. Хотя можно и визуально определить неисправность в виде вздутия, или, если потрести его, в виде постукивания внутри, но такой способ не может показать скрытые дефекты.

И последним этапом проверки будет измерение транзистора Q1, на наличие пробоя. В приведенном выше рисунке опущена схема управления транзистором, поэтому в зависимости от компоновки не лишним будет проверить и его обвязку. И кстати, если он пробит то тут прежде чем его менять, следует уже более подробно разбираться со схемой управления транзистором и трансформатором следующим после него на предмет межвиткового замыкания.

Только проведя все эти проверки в цепи и заменив неисправные компоненты, можем ставить предохранитель такого же номинала и производить включение.

Читайте также:  Напряжение при пропадании одной фазы

Надеюсь статья была полезна.

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

Источник

Почему сгорел предохранитель

Электросети в частном секторе иногда оставляют желать лучшего. А если вам еще и повезет с рукастым соседом, который любит варить железяки самопальным сварочным аппаратом, то рано или поздно вас может огорчить выход из строя бытовой техники. Так случилось и со мной в день написания данного материала. Работая за ноутбуком я боковым зрением увидел свечение в корпусе ресивера и через секунду лишился звука из акустики. Благо мне повезло — всего лишь перегорели предохранители в усилителе и сабвуфере.

Стеклянная трубка с двумя металлическими контактами по бокам и отрезком проволоки внутри – так выглядит большинство плавких предохранителей. И на вопрос, почему они перегорают, попытаемся ответить в данной статье.

Наиболее распространенный предохранитель представляет собой стеклянную трубку, закрытую с обоих концов металлическими крышками. Крышки надеваются на края трубки, которая является корпусом предохранителя. На края трубки перед установкой крышек наносится клей, таким образом, крышки – они же контакты предохранителя — закрепляются на корпусе довольно прочно. Внутри трубки-корпуса находится калиброванная металлическая проволока. Сечение проволоки может быть различным и зависит от необходимого тока «срабатывания» предохранителя. Проволока припаивается к выводам предохранителя внутри корпуса. Могут быть несколько вариантов подобной конструкции. Например, вместо стеклянной используется керамическая трубка, в некоторых случаях трубка заполняется песком, для увеличения быстродействия предохранителя проволочная перемычка натягивается с помощью пружины. Крышки-контакты могут иметь гибкие выводы для впаивания в плату.

Различия в конструкции не меняют принципа работы плавкого предохранителя: при протекании через калиброванную перемычку электрического тока определенной силы, эта перемычка расплавляется (поэтому плавкий предохранитель) и, обрываясь, разрывает электрическую цепь, в которую включен данный предохранитель.

Таким образом, предохранитель, отключает от электросети устройство, которое по каким-либо причинам начинает потреблять электрический ток, сила которого больше номинальной для данного устройства. В результате электроприбор защищается:

  • от возгорания,
  • от дальнейшего развития возникшего в электроприборе дефекта,
  • от возникновения дефекта в приборе.

Также предохранитель защищает от перегрузки электрическую сеть, отключая устройство с ненормальным режимом работы.

Несколько примеров работы плавких предохранителей

Предохранитель защищает от возникновения дефекта в приборе. Данная функция предохранителя как раз и сформировала у многих владельцев электронной техники мнение, что перегорание предохранителя – это не признак наличия дефекта в аппарате. Достаточно просто заменить вышедший из строя предохранитель, и электроприбор будет совершенно нормально продолжать свою работу. И это мнение основано не на пустом месте. Еще сравнительно недавно большинство электронных устройств было собрано на электронных лампах.

Наверно многие еще помнят так называемые феррорезонансные стабилизаторы, которые использовались вместе с ламповыми телевизорами. А еще до повсеместного появления в обиходе стабилизаторов для обеспечения нормального напряжения питания телевизоров применялись автотрансформаторы бытовые – электромеханические устройства, которые позволяли вручную – с помощью ручки-регулятора – изменять напряжение питания телевизора. Процесс настройки данного «агрегата» выглядел так. Владелец включал телевизор и смотрел на вольтметр, находящийся на корпусе автотрансформатора. Этот вольтметр показывал, какой величины напряжение подается на телевизор с выхода автотрансформатора. Если вольтметр показывал 220 Вольт – никаких действий не предпринималось, можно было спокойно смотреть телевизор, изредка сверяясь с показаниями вольтметра. Если вольтметр показывал, что напряжение питания телевизора равно, например, 180-190 Вольт, ручка регулирования напряжения поворачивалась по часовой стрелке, если напряжение превышало 220 Вольт – против часовой стрелки до того момента, когда напряжение на выходе автотрансформатора становилось равным 220 Вольт. Такой вот несложный процесс, имеющий, однако, одну коварную особенность. Если вчера напряжение электросети было, скажем, 190 Вольт, то сегодня сеть может быть нагружена меньшим количеством потребителей и напряжение в ней равно уже 220 вольт. Иногда владелец забывал посмотреть на вольтметр, в результате на телевизор подавалось повышенное напряжение питания. Что же происходило в таком случае? Повышение напряжения питания устройства в целом приводило к повышению напряжения питания всех ламповых узлов. В итоге электронные лампы начинали потреблять электрический ток, величина которого могла достаточно сильно превышать норму. Вот тогда-то и включались в работу плавкие предохранители, которых в ламповом телевизоре, кстати, было немалое количество. Предохранитель перегорал, телевизор отключался, владелец вспоминал, что не обратил внимания на показания вольтметра автотрансформатора.

Читайте также:  Симметричная трехфазная система напряжений прямой последовательности

Какова же роль предохранителя в современной полупроводниковой технике? Рассмотрим тот же пример, который приводился в разговоре о ламповых телевизорах, а именно – повышение напряжения электрической сети. Безусловно, современные сети отличаются в основном хорошей стабильностью напряжения. Тем не менее, по ряду причин повышение напряжения в электросетях случается и сейчас. Что же происходит в данном случае с полупроводниковыми устройствами? То же самое, что и в предыдущем примере с ламповыми – повышаются напряжения питания всех блоков и узлов аппарата, возрастают токи через полупроводниковые приборы (транзисторы и микросхемы). Однако если в ламповом устройстве критическое возрастание тока обычно не приводит к выходу лампы из строя, транзисторы в подобной ситуации не столь выносливы: при достижении определенной величины тока через транзистор наступает так называемый пробой p-n переходов (обычно говорят «пробой транзистора»). Этот процесс необратим. Восстановить работоспособность поврежденного устройства можно только заменой вышедших из строя элементов схемы.

Да, предохранители имеются и в полупроводниковой аппаратуре. И они перегорают, и в приведенном примере предохранитель тоже перегорит, но уже после того, как будет пробит полупроводниковый прибор. Все дело в том, что скорость нарастания тока через транзистор значительно превышает скорость расплавления нити предохранителя. То есть, при значительной перегрузке по напряжению быстродействия предохранителя недостаточно для защиты полупроводниковых приборов от выхода из строя. В данном случае предохранитель защищает устройство от дальнейшего развития уже имеющегося дефекта (усиления имеющихся повреждений) и от возгорания.

В заключение рекомендаций владельцам бытовой техники: При всей простоте конструкции предохранителя, роль его в электронной технике не так проста, как это может показаться на первый взгляд. Поэтому постарайтесь воздержаться от самостоятельной замены перегоревших предохранителей, особенно в устройствах на полупроводниковых приборах. Если все же очень хочется это сделать – пробуйте, есть некоторая вероятность, что это оживит устройство. Но в таком случае следует иметь в виду, что зачастую замена предохранителя без оценки состояния аппарата (проведения надлежащей диагностики) приводит к усугублению уже имеющегося дефекта.

Важное замечание: заменять перегоревший предохранитель нужно только на предохранитель того номинала, который рекомендован производителем Вашего электронного устройства. Что касается моих усилителей ресивера и сабвуфера — я все же рискнул и поставил в них предохранители из старых блоков питания от компьютера. И все заработало)

Источник

Оцените статью
Adblock
detector