Напряжение 5v для чего можно использоваться

Источник питания 5V

Общие сведения

Источник питания 5V — это источник автономного питания для 5 В плат Arduino, ESP32, Rasperry Pi и других нагрузок, требующих 5 вольт постоянного тока. Он позволит сделать Ваши устройства по настоящему мобильными.

В модуле имеется контроллер заряда Li-Po и Li-Ion аккумуляторов. Модуль исполнен в двух вариантах: со встроенным аккумулятором и без аккумулятора, что позволяет использовать иные, более компактные или более емкие аккумуляторы. Для варианта без аккумулятора, аккумулятор необходимо припаять к терминалам V bat .

Источник питания 5V выполнен в формате, совместимым с ПВХ конструктором

Видео

Характеристики

  • Входное напряжение питания зарядного устройства: 5 В (порт USB micro-B);
  • Выходное напряжение питания модуля: 5 В (постоянного тока);
  • Напряжение заряда аккумулятора: 4,2 В;
  • Тип аккумулятора: LiPo (литий-полимерный) 3,7 В;
  • Ток заряда аккумулятора: 0,5 А;
  • Ток на выходе модуля, вариант с аккумулятором: до 1500 мА
  • Ток на выходе модуля (зависит от аккумулятора), вариант без аккумулятора: до 2500 мА (в пиках до 3 А);
  • Ток разряда аккумулятора во включённом состоянии без внешней нагрузки: менее 1 мА;
  • Рабочая температура: 0 . 70 °С;
  • Размеры, мм:

Подключение нагрузки

Нагрузку можно подключать одновременно и к колодкам и к разъёму 5V out . Для подключения к разъёму необходимо зачистить от изоляции

4мм провода, вставить провода по очереди в отверстия разъёма, нажав отвёрткой необходимый зажим терминала разъёма. После этого проверьте что провода закреплены должным образом. Для работы с разъёмом рекомендуем использовать одножильные провода, гильзы или лужёные провода.

Так же, можно одновременно заряжать аккумулятор и использовать выходы модуля.

Подключение к отладочным платам

Модуль удобно подключать 2 способами, в зависимости от ситуации:

Способ — 1: Используя колодки

Вывод Arduino Вывод модуля 5V OUT
5V +
GND

Вывод Rasperry Вывод модуля 5V OUT
5V +
GND

Способ — 2: Используя разъём

Вывод Arduino Вывод модуля 5V OUT
5V +
GND

Вывод Rasperry Вывод модуля 5V OUT
5V +
GND

Подключение зарядного устройства и выключателя питания

Подключение зарядного устройства

Источник питания можно продолжать использовать во время заряда батареи.

Подключение внешнего выключателя (для вывода на корпус)

При таком подключении, встроенный на плату выключатель должен быть в положении ON

Подключение аккумулятора (для варианта модуля без аккумулятора)

Максимальный ток на выходе модуля зависит от максимального тока аккумулятора. Для достижения максимальной мощности аккумулятор должен быть в состоянии поддерживать токи в 5 А. Возможно использования Li-Po и Li-Ion аккумуляторов. Рекомендуем использовать аккумуляторы со встроенной защитой по току.

Источник

Питание и заряд 5V-гаджетов

• базовые знания по зарядке через USB
• схемотехника зарядных устройств
• проблемы и их устранение

Статья из цикла питание и заряд . Автор — Kargal.

Общая информация

USB-разъёмы подключения гаджетов

В последние годы заметно проявилась тенденция унификации разъёмов «данные/питание» разных гаджетов разных производителей (пожалуй, только Apple продолжает идти «своим путём»).
С целью минимизации размеров используются разъёмы mini-USB или micro-USB, имеющие по пять контактов и одинаковую цоколёвку.

Цоколёвка разъёмов и варианты подключения кабелей приведены в таблице ▼

Pin# 1
VBUS 2
D− 3
D+ 4
ID 5
GND Цвет
провода
—————— —————— —————— ——————
None —————— Red White Green Black Data-кабель +5V input -Data +Data NC GND OTGкабель +5V output -Data +Data connected→ GND ЗУ «DVR» NC NC NC +5V input GND «Garmin» +5V input -Data +Data 18 kΩ→ GND ЗУ «Motorola» +5V input NC NC 200 kΩ→ GND ЗУ «Glofish» +5V input NC NC connected→ GND

Основному USB-стандарту соответствуют два кабеля:

  • «Data-кабель» — используется для зарядки и информационного подключения к ПК в режиме «Slave»; в этом кабеле pin4 ни к чему не подключен (NC — not connected).

#) Во всех разрешающих зарядку (не OTG) случаях шины данных (D− и D+) используются двояко — в течение

2-х секунд после появления внешнего напряжения питания на pin1 гаджет по потенциалам и свойствам линий данных определяет тип зарядного порта. «Знать» тип зарядного порта гаджету нужно для определения максимально допустимого тока для данного зарядного устройства (далее — ЗУ). После идентификации порта гаджет позволяет себе потреблять ток для работы/зарядки, а если порт оказался сигнальным (типов SDP или CDP), то ещё и обмениваться данными в роли USB-периферийного (Slave) устройства.

  • «Кабель OTG» — соединение pin4 (вход «Ident») c pin5 (GND) обычно осуществляется непосредственно в кабельной части разъёма и вынуждает гаджет работать в режиме «Host» — питать и обслуживать подключаемую периферию (мышь, флэш-накопитель, внешняя клавиатура и т.д.). Данный кабель не позволяет осуществлять внешнее питание или зарядку гаджета, имеющего режим USB-OTG. Стандарт BCv1.2 допускает возможность зарядки в Host-режиме USB-OTG устройства, опознающего порт типа ACA (уже не этим кабелем), но о существовании в природе таких устройств пока ничего не известно.

Пользуясь нестрогостью соблюдения стандарта многие производители гаджетов позволяют себе некоторые шалости по использованию контактов разъема без оповещения пользователей. Это обстоятельство затрудняет возможность замены штатного ЗУ на универсальное при утере/поломке штатного или при организации дополнительного поста зарядки. Например:

  • «ЗУ DVR» — существует множество моделей автомобильных видеорегистраторов, питание которых может осуществляться двумя способами:
    1. При подключении стандартным data-кабелем регистратор «оживает», но не приступает к записи, а предлагает длинные занудные переговоры (через меню, с помощью кнопок) для объяснения регистратору что от него сейчас требуется.
    2. При подключении особенным кабелем «ЗУ DVR» (питание +5 V подается на pin4 ) такой регистратор сразу приступает к съёмке, что позволяет организовать его автоматическое включение в автомобиле при запуске двигателя.
  • «Garmin», «ЗУ Motorola» — pin4 подключается к pin5 (GND) через резистор, величина которого задаёт гаджету режим работы/зарядки (см. статью «Зарядка гаджетов через USB»).
  • «ЗУ Glofish» (и наследники Glofish) — pin4 закорачивается на pin5 (GND) для разрешения потребления более 0.5 A (см. тему на форуме 4PDA).

К сожалению, легкодоступной информации по таким ухищрениям применительно к конкретным моделям гаджетов не существует — производители то ли хитрят, оберегая свой бизнес, то ли стесняются своих извращений. Встречаются только разрозненные и не очень чёткие упоминания на форумах. Остаётся надеяться, что сообщество пользователей отмобилизуется и создаст базу данных.

Пользовательские характеристики зарядных устройств (ЗУ)

Напряжение

ЗУ с USB-разъёмами подключения нагрузки номинируются на Uвых=5 V и обычно реально соответствуют USB-спецификации – Uвых=4,75÷5,25 V. (Хотя встречаются исключения).

Специализированные автомобильные (АЗУ) и сетевые зарядные устройства (СЗУ), даже номинирующиеся на 5 V, могут иметь несколько повышенное напряжение. Например, планшеты на Rockchip RK3066, имеющие контроллер заряда OZ8555, требуют от ЗУ Uвых=5.6÷5.7 V, что и реализуется в штатных ЗУ. Такие ЗУ обычно имеют встроенный выходной кабель со специализированным (не USB) разъёмом подключения к гаджету.

Некоторое превышение напряжения над стандартным (до 5.3÷5.4 V) полезно и для мощных гаджетов, питающихся через USB-разъем, для компенсации падения напряжения на кабеле питания. И производители гаджетов это реализуют — штатное СЗУ для планшета Freelander PX1/PX2 (со встроенным кабелем и разъёмом microUSB) расчётно выдаёт Uвых=5.3 V (при номинации 5 V).

К вопросу о максимально допустимом напряжении ЗУ. Современные гаджеты имеют в своём составе контроллер заряда, управляющий режимом потребления тока от ЗУ (при зарядке и при работе) с помощью ШИМ-преобразователя. То есть приведение напряжения ЗУ к напряжению батареи (3.3÷4.2 V) производится без излишнего выделения тепла и прочих неприятностей. Типично максимально допустимые напряжения питания таких контроллеров составляют: рабочее — 5.5 V, предельное (срабатывание защиты по перенапряжению – OVP) — 6.0÷6.5 V; то есть, любой гаджет может спокойно работать с ЗУ, имеющим напряжение холостого хода до 5.5 V (и не сгорит при 6 V). Некоторые контроллеры сохраняют работоспособность до 6.5 V.

Все зарядные устройства номинируются производителем на ток, значение которого обязательно прописывается на этикетке ЗУ (иногда номинируются по мощности, для 5 V –

5 W/A). Но эта цифра вовсе не означает, что такой ток будет получать конкретный (именно Ваш) гаджет. Это скорее утверждение, что никакой гаджет не сможет получить с данного ЗУ ток больше указанного. А для китайских ЗУ эта цифра ещё и завышена процентов на 30÷50. Номинация производится по максимальным возможностям полупроводниковых преобразователей, но недостаточный теплоотвод и низкое качество индукторов и конденсаторов зачастую не позволяют реализовать эти возможности в долговременном режиме (более трёх минут).

Выход простой — любой гаджет может использовать ЗУ с номинацией по току в 2÷5 раз большей, чем необходимый ему ток. В этой ситуации у гаджета просто руки не связаны (напряжение ЗУ не снижается и нет внешнего ограничения тока) и он будет брать ровно столько, сколько ему в данный момент необходимо (сколько позволяет встроенный контроллер заряда гаджета). Типично при наполовину разряженной батарее потребляется максимальный для данного гаджета ток, по мере приближения к полному заряду ток плавно снижается.

Различные гаджеты по-разному ведут себя в режиме совмещения зарядки с работой. Некоторые имеют одно общее значение максимального тока потребления — при только зарядке в аккумулятор поступает весь ток, а при включении экрана ток собственно заряда уменьшается на долю, потребляемую экраном. У других гаджетов токи заряда и работы контролируются раздельно — при включении экрана ток заряда не изменяется, а ток потребления увеличивается на долю, потребляемую экраном. При этом суммарное потребление не может превышать некоторого «абсолютного» максимума для данного гаджета, например, значения, жестко заложенного в гаджет или разрешённого типом опознанного используемого зарядного порта.

Встречающиеся неприятности

Маломощные, потребляющие до 0.5A, гаджеты (простые телефоны, видеорегистраторы, навигаторы) обычно неприятностей не приносят. Разве что, явная неисправность — самого гаджета или соединительного кабеля.
С мощными гаджетами ситуация посложнее (при попытках работать с нештатным ЗУ). Встречается много жалоб типа «не заряжает», «заряжает медленно». Среди всех возможных существуют варианты причин:

  • ЗУ не соответствует требуемому току. При подключении гаджета ЗУ входит в режим ограничения тока на уровне, недостаточном для данного гаджета, и снижает выходное напряжение. Например, гаджету требуется 0.9 A. Некое зарядное устройство номинируется на 1.0 A, но реально может выдавать не более 0.7 A — низкое качество ЗУ, обман в номинации. Требуется замена ЗУ.
  • ЗУ не соответствует требуемому напряжению. Производители гаджетов не очень строго следят за соответствием требуемого гаджету напряжения стандартному значению (типично 5.0 V). А в штатных ЗУ они «подмухлёвывают», настраивая ЗУ на завышенное 5.2÷5.4 V, но номинируя их на 5.0 V. В результате гаджеты отказываются работать с «честными» чужими ЗУ. Требуется замена ЗУ (только ввиду их безликости непонятно какое выбрать) или подстройка выходного напряжения имеющегося ЗУ (требуется вскрытие).
  • Непригодный кабель питания (см. статью «USB-кабели и кабели питания»). Для полного заряда литиевого аккумулятора необходимо напряжение на нём поднять до уровня 4.2 V (появились модели с уровнем 4.3 V). Кроме того, на ключе встроенного в гаджет контроллера заряда при прохождении зарядного тока может падать 0.3÷0.7 V. То есть, для нормальной зарядки на входном разъёме питания гаджета необходимо обеспечить напряжение не менее 4.5÷4.9 V. Соединительные кабели (особенно если применяется data-кабель, да ещё и китайский) могут иметь сопротивление линий питания 0.3÷0.8 Ω, что при токе в 1.5 A «съедает» ещё 0.45÷1.2 V. В результате для зарядки с таким током не хватает напряжения ЗУ. Зарядка происходит долго (а при включённом экране вплоть до «никогда»). Требуется замена кабеля на другой, с меньшим сопротивлением (с более толстыми жилами питания).
  • Неподходящая кодировка типа зарядного устройства. При использовании в гаджете совмещённого разъёма данные/питание типа micro-USB или mini-USB от него требуется умение определять тип порта, к которому он подключается. Это необходимо, чтобы гаджет мог подключаться и к стандартному USB-порту компьютера, не перегружая его (для обмена данными), и к мощному ЗУ, способному запитать/зарядить мощный гаджет. При подключении гаджета (при появлении внешнего напряжения на его шинах питания), его контроллер заряда по состоянию линий данных определяет тип порта (его нагрузочную способность) и позволяет себе потреблять ток только в пределах возможностей опознанного типа порта. Если тип порта даже достаточно мощного ЗУ гаджетом не опознаётся, его контроллер не позволит себе брать больше 500mA (что соответствует нагрузочной способности стандартного USB-порта компьютера). Таким образом, гаджет конечно же не зарядится, если сам потребляет 1.5 A. Просто замедлится его разряд. Признаки типов портов описаны в статье «Типы зарядных портов».

#) К сожалению, исторически сложилось несколько не очень совместимых систем кодировки типа порта, и какой кодировкой пользуется конкретный гаджет не указывается в его документации. Существуют только невнятные и неоднозначные намеки: «ЗУ для Samsung», «ЗУ для iPad», но какие из универсальных ЗУ подходят для них — непонятно. А о представителях мощного потока изделий китайской промышленности и говорить нечего. (Хорошо бы создать базу признаков для всех мощных гаджетов и в представлениях новых моделей на форумах предъявлять их).

Та же неразбериха и с универсальными ЗУ. Уже появились ЗУ с разными надписями («Samsung» и «Apple» например) и кодировками на разных разъемах USB-AF, но на некоторые встречаются отзывы: «Разъём с надписью Apple заряжает Samsung Galaxy Note 2 быстрее, чем второй, с надписью Samsung» . У некоторых все USB-разъёмы запараллелены, то есть, имеют независимо от надписей одинаковую кодировку.

Изменение выходного напряжения ЗУ

Сетевые ЗУ (СЗУ)

Типичная схема низковольтной части качественного сетевого ЗУ ▼

Здесь HL – светодиод оптрона обратной связи, DA – параллельный стабилизатор, фактически использующийся в режиме компаратора. Полная схема стремится установить такое выходное напряжение Uout, чтобы напряжение на выходе делителя RU/RL было равным внутреннему опорному напряжению Uref стабилизатора DA. Для стабилизаторов семейства TL431 Uref=2.5 V, для семейства TLV431 – Uref=1.25 V. Величину Uref реально замерить цифровым вольтметром на включённом и нагруженном ЗУ, через резистор 50÷100 kΩ (для обеспечения устойчивости схемы во время измерения).

#) Осторожно! Первичная сторона под высоким напряжением.

10% необходимо изменить параметры делителя RU/RL так, чтобы напряжение на его выходе (точка соединения RU и RL) равнялось Uref не при 5,0 V на выходе ЗУ, а при

5,5 V. Проще всего это устроить добавлением шунтирующего резистора RL. Его величина должна быть:

(Величину RL в конкретном ЗУ можно определить по его маркировке или реально замерить цифровым омметром на выключенном ЗУ и отключенной нагрузке).

Для снижения Uout проще всего шунтировать RU.

#) Для ковыряния во внутренностях ЗУ хорошо бы иметь у него разборный (не склеенный) корпус.

Автомобильные ЗУ (АЗУ)

В автомобильных ЗУ обычно используются понижающие (Buck, StepDown) ШИМ-преобразователи. Типичная выходная часть схемы ▼

Здесь:
SW — выход встроенного силового ключа преобразователя;
CBS — ёмкость вольтодобавки, используется только для преобразователей с N-MOS (или NPN) силовым ключом;
VD1 — клампирующий (фиксирующий) диод, используется только для простых (не синхронных) преобразователей;
CCOR – ёмкость коррекции обратной связи (может не использоваться);
RU и RL — исходный делитель обратной связи, задающий величину выходного напряжения;
RL-Ш — корректирующий резистор, добавляемый для повышения выходного напряжения.

Полная схема стремится установить такое выходное напряжение Uout, чтобы напряжение на выходе делителя RU/RL было равным внутреннему опорному напряжению UFB стабилизатора.

Величину UFB можно взять из data-sheet используемого преобразователя или реально замерить цифровым вольтметром на включённом и нагруженном ЗУ, через резистор 50÷100 kΩ (для обеспечения устойчивости схемы во время измерения).

10% необходимо изменить параметры делителя RU/RL так, чтобы напряжение на его выходе (точка соединения RU и RL) равнялось UFB не при 5,0 V на выходе ЗУ, а при

5,5 V. Проще всего это устроить добавлением шунтирующего резистора RL. Его величина должна быть:

Для UFB=1.23 V: RL=7.5*RL — для преобразователей MC34063, LM2576, LM2596, ACT4070;

Для UFB=0.925 V: RL=8.2*RL — для преобразователей CX8505, RT8272, AP6503, MP2307;

Для UFB=0.80 V: RL=8.4*RL — для преобразователей AX4102, XL4005.

(Величину RL можно определить по его маркировке или реально замерить цифровым омметром на выключённом ЗУ и отключенной нагрузке).

Для снижения Uout проще всего шунтировать RU.

Электроника гаджетов

Контроллеры зарядки

OZ8555/o2micro

(Используется в планшетах на RK3066 – Hyundai Hold X700, Window N101/YUANDAO N101; PIPO M1, PIPO Max-M8 pro, PIPO Smart-S2; CUBE U9GT3)

Содержит в своем составе DC/DC-преобразователь для зарядки аккумулятора и питания гаджета. Требует напряжения внешнего питания 5.5÷5.9 V (не менее 5.4 V на входе в гаджет) и используется в гаджетах с отдельным (не USB) разъемом зарядки.

Data-sheet на OZ8555 не нашел, но, похоже, у него порог срабатывания защиты от недостаточного напряжения питания UVLO (Under Voltage Lock Out) равен 5.1÷5.3 V вместо привычных для 5-вольтовых гаджетов 3.9÷4.5 V. такое свойство вполне бы объяснило некорректность работы от «чужой» зарядки, выдающей менее 5.4 V.

BQ24190/TI

Uin-min3,9 V; Iin – 1.5/3 A

BQ24190 определяет тип зарядного порта в соответствии со спецификацией BG v1.2, при закороченных D– и D+ определяет порт как DCP и позволяет себе потреблять от внешнего питания ток более 0.5 A.

Ссылки

Форум «4PDA» – Зарядное устройство для коммуникаторов с mini/microUSB, что необходимо и что достаточно

Статья на «Rones.su» – Зарядка гаджетов через USB

Форум «USB.org» – Battery Charging v1.2 Spec and Adopters Agreement

«Maximintegrated» – The Basics of USB Battery Charging

Здравствуйте.
Столкнулся с интересным устройством из поднебесной производства компании Jansite. https://aliexpress.ru/item/33024194114.html Ну точнее я его приобрел. Это зеркало-видеорегистратор на две камеры.
Он с завода комплектуется двумя видами блоков питания. Один обычный от прикуривателя выдает питание на зеркало через мини-USB. На первом пине плюс на 5-ом минус. Второй блок питания умный. У него на входе берется два источника +12 вольт. Один прямой с аккумулятора автомобиля второй с ACC. На АСС +12 вольт появляется только когда ключ в замке и повернут в нормальное положение. В прикуривателе обычно питание есть тоже тогда когда и на АСС. В большинстве автомобилей.
С обычным блоком питания зеркало работает нормально и в момент когда вытаскиваешь ключ оно сообщает о потере питания, останавливает запись и уходит на выключение. При этом у него есть своя автономная маленькая батарея и в случае срабатывания датчика удара оно стартует на некоторое время несколько секунд ведет запись и опять выключается.

При подключении с умным блоком питания алгоритм работы заявлен несколько другой. В момент пропадания напряжения на входе АСС зеркало должно переходить в режим медленной съемки и тушить экран. Кроме этого при подключенном умном блоке питания в меню должно появляться несколько дополнительных пунктов меню как раз для управления режимами работающими с умным блоком питания. Ну и естественно в момент появления напряжения на входе АСС зеркало должно переходить опять в режим обычной съемки и включать экран.

У меня зеркало с обычным блоком питания. И я озадачился соорудить умный блок питания своими руками. Схемы или просто алгоритма работы умного блока питания в сети не нашел. Но выяснил что блок питания достаточно типовой и используется с подобными зеркалами и некоторыми видеорегистраторами. Из моих изысканий на эту тему я выяснил что контакты 2 и 3 разъема мини-USB на зеркале не подключены. Это видно на фотографии печатной платы от аналогичного зеркала. Выводы 1 и 4 подключены в разные места на печатной плате зеркала но оба задействованы. И если по контакту 1 с обычного блока питания подается +5 вольт (сейчас уже не очень уверен что именно 5 после прочтения ваших статей завтра буду измерять точнее), то что подается на 4-ый пин мне несколько не ясно. Но я уверен что что-то должно подаваться, а то иначе как зеркало будет понимать что оно подключено к умному блоку питания. Может Вы сталкивались с подобными конструкциями или просто подскажите как мне логичнее действовать в поисках решения этой ситуации. А то уже почти готов сдаться на милость хитрых китайцев и купить их фирменный умный блок питания.

Добрый день. Перестал заряжаться ноутбук сяоми, Usb c. Я особо не разбираюсь но вооружившись тестером проверил входное напряжение на самом порте зарядки, оно скачет от 2 до 6 вольт. До батареи же доходит только 0.15в. Другой порт который не для зарядки на тех же пинах показывает стабильные 5,4 вольт и не скачет. Так вот вопрос это сам порт или что то внутри? Спасибо заранее.

Отключите аккумулятор от цепи заряда и посмотрите, изменится ли «поведение» зарядного напряжения.
Вообще, эта задача всё же для службы сервиса. Я могу дать вам контакты моего знакомого мастера — он за стмволическую плату проконсультирует вас. Совместными усилиями вы диагностируете неисправность, а при удачном раскладе и устраните проблему.

Отключил, так же прыгает. Вот минут 20 назад проверял было стабильно, потом опять стало прыгать, мигнул красный диод один раз и все. Да я понимаю что лучше в сервис, но я сейчас во Вьетнаме, мне сложно с ними контактировать. Хотелось бы узнать в чем дело и уже в сервисе просто тыкнуть пальцем — поменяйте)) Вообще какова вероятность что это просто порт (я надеюсь что заменить порт достаточно легко)?

Заменить само гнездо порта — относительно просто. Но я очень сомневаюсь, что проблема именно в гнезде. Предполагаю, что-то просаживает напряжение в цепи заряда. Конкретнее вам скажет специалист. Пока не могу до него дозвониться.
К слову, подавать напряжение на порт, не предназначенный для заряда — плохая привычка. В случае с портом версии 2.0 или 3.0,вы бы сожгли его.

Там два одинаковых порта рядом с друг другом, думаю даже по ошибке не глядя каждый туда хоть раз вставлял зарядку, было бы весело если бы они горели, да) Если не трудно, да, спросите у специалиста в чем может быть дело, чтобы я хоть примерно знал лечится это или нет. А то принесу в сервис — по классике скажут ну надо плату менять полностью)

Увы, мастер не может дистанционно диагностировать таккю неисправность — слишком много возможных причин.

Добрый день. Не знаю в тему или нет но вроде да. Перестал заряжаться ноут, сяоми. При подключённой зарядке ток на самом порту зарядки внутри ноута скачет от 2 до 5 с копейками вольт. На батарейку же доходит 0.15в всего. Вставляю в другой порт(не для зарядки) те же пины плюса показывают стабильные 5,4 вольт. Так вот вопрос, это сам порт барахлит, или же что то внутри? П. С. Я не разбираюсь толком, а там где я живу сервисы не очень. Так вот я решил снарядившись тестером померять сам и уже сказать в сервисе что конкретно поменять нужно.

Сообщите поточнее модель ноута, чтоб я понимал, о какой версии порта идёт речь.

Источник

Читайте также:  Допускаемое напряжение кручения мпа
Оцените статью
Adblock
detector