Напряжение при последовательном соединении трех проводников определяется выражением

Напряжение при последовательном соединении трех проводников определяется выражением

Проводники в электрических цепях могут соединяться последовательно и параллельно.

При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:

.

По закону Ома, напряжения и на проводниках равны

.

Общее напряжение на обоих проводниках равно сумме напряжений 1 и 2:

,

где – электрическое сопротивление всей цепи. Отсюда следует:

= 1 + 2.

При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.

Этот результат справедлив для любого числа последовательно соединенных проводников.

При параллельном соединении (рис. 1.9.2) напряжения 1 и 2 на обоих проводниках одинаковы:

.

Сумма токов 1 + 2, протекающих по обоим проводникам, равна току в неразветвленной цепи:

= 1 + 2.

Этот результат следует из того, что в точках разветвления токов (узлы и ) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу за время Δ подтекает заряд Δ, а утекает от узла за то же время заряд 1Δ + 2Δ. Следовательно, = 1 + 2.

Записывая на основании закона Ома

где – электрическое сопротивление всей цепи, получим

При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Этот результат справедлив для любого числа параллельно включенных проводников.

Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 1.9.3 приведен пример такой сложной цепи и указана последовательность вычислений.

Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 1.9.4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.

Цепи, подобные изображенной на рис. 1.9.4, а также цепи с разветвлениями, содержащие несколько источников, рассчитываются с помощью правил Кирхгофа.

Источник

Ток и напряжение при параллельном, последовательном и смешанном соединении проводников

Реальные электрические цепи чаще всего включают в себя не один проводник, а несколько проводников, как-то соединенных друг с другом. В самом простом виде электрическая цепь имеет только «вход» и «выход», то есть два вывода для соединения с другими проводниками, через которые заряд (ток) имеет возможность втекать в цепь и из цепи вытекать. При установившемся токе в цепи, значения величин токов на входе и на выходе будут одинаковы.

Если взглянуть на электрическую цепь, включающую в себя несколько разных проводников, и рассмотреть на ней пару точек (вход и выход), то в принципе остальная часть цепи может быть рассмотрена как одиночный резистор (по ее эквивалентному сопротивлению).

При таком подходе говорят, что если ток I – это ток в цепи, а напряжение U – напряжение на выводах, то есть разность электрических потенциалов между точками «входа» и «выхода», то тогда отношение U/I можно рассмотреть как величину эквивалентного сопротивления R цепи целиком.

Если закон Ома выполняется, то эквивалентное сопротивление можно вычислить довольно легко.

Ток и напряжение при последовательном соединении проводников

В простейшем случае, когда два и более проводников объединены друг с другом в последовательную цепь, ток в каждом проводнике окажется одним и тем же, а напряжение между «выходом» и «входом», то есть на выводах всей цепи, будет равным сумме напряжений на составляющих цепь резисторах. И поскольку закон Ома справедлив для любого из резисторов, то можно записать:

Итак, для последовательного соединения проводников характерны следующие закономерности:

Для нахождения общего сопротивления цепи, сопротивления составляющих цепь проводников складываются;

Ток через цепь равен току через любой из проводников, образующих цепь;

Напряжение на выводах цепи равно сумме напряжений на каждом из проводников, образующих цепь.

Ток и напряжение при параллельном соединении проводников

При параллельном соединении нескольких проводников друг с другом, напряжение на выводах такой цепи — это напряжение на каждом из проводников, составляющих цепь.

Напряжения на всех проводниках равны между собой и равны напряжению приложенному (U). Ток через всю цепь — на «входе» и «выходе» — равен сумме токов в каждой из ветвей цепи, параллельно объединенных и составляющих данную цепь. Зная, что I = U/R, получаем, что:

Итак, для параллельного соединения проводников характерны следующие закономерности:

Для нахождения общего сопротивления цепи — складываются обратные величины сопротивлений составляющих цепь проводников;

Ток через цепь равен сумме токов через каждый из проводников, образующих цепь;

Напряжение на выводах цепи равно напряжению на любом из проводников, образующих цепь.

Эквивалентные схемы простых и сложных (комбинированных) цепей

В большинстве случаев схемы цепей, являясь комбинированным соединением проводников, поддаются пошаговому упрощению.

Группы соединенных последовательно и параллельно частей цепи, заменяют эквивалентными сопротивлениями по приведенному выше принципу, шаг за шагом вычисляя эквивалентные сопротивления кусочков, затем приводя их к одному эквивалентному значению сопротивления всей цепи.

И если сначала схема выглядит довольно запутанной, то будучи упрощенной шаг за шагом, она может быть разбита на меньшие цепочки из последовательно и параллельно соединенных проводников, и так в конце концов сильно упрощена.

Между тем, не все схемы подаются упрощению таким простым путем. Простая с виду схема «моста» из проводников не может быть исследована таким образом. Здесь нужно применять уже несколько правил:

Для каждого резистора выполняется закон Ома;

В любом узле, то есть в точке схождения двух и более токов, алгебраическая сумма токов равна нулю: сумма токов втекающих в узел, равна сумме токов вытекающих из узла (первое правило Кирхгофа);

Сумма напряжений на участках цепи при обходе по любому пути от «входа» до «выхода» равна приложенному к цепи напряжению (второе правило Кирхгофа).

Мостовое соединение проводников

Дабы рассмотреть пример использования приведенных выше правил, рассчитаем цепь, собранную из проводников, объединенных в схему моста. Чтобы вычисления получились не слишком сложными, примем, что некоторые из сопротивлений проводников равны между собой.

Обозначим направления токов I, I1, I2, I3 на пути от «входа» в цепь — к «выходу» из цепи. Видно, что схема симметрична, поэтому токи через одинаковые резисторы одинаковы, поэтому обозначим их одинаковыми символами. В самом деле, если поменять у цепи местами «вход» и «выход», то схема будет неотличима от исходной.

Для каждого узла можно записать уравнения токов, исходя из того, что сумма токов втекающих в узел равна сумме токов вытекающих из узла (закон сохранения электрического заряда), получится два уравнения:

Следующим шагом записывают уравнения сумм напряжений для отдельных участков цепи при обходе цепи от входя к выходу различными путями. Так как схема является в данном примере симметричной, то достаточно двух уравнений:

В процессе решения системы линейных уравнений, получается формула для нахождения величины тока I между зажимами «входным» и «выходным», исходя из заданного приложенного к цепи напряжения U и сопротивлений проводников:

А для общего эквивалентного сопротивления цепи, исходя из того, что R = U/I, следует формула:

Можно даже проверить правильность решения, например приведя к предельным и к частным случаям величины сопротивлений:

Теперь вы знаете, как находить ток и напряжение при параллельном, последовательном, смешанном, и даже при мостовом соединении проводников, применяя закон Ома и правила Кирхгофа. Эти принципы очень просты, и даже самая сложная электрическая цепь с их помощью в конце концов приводится к элементарному виду путем нескольких несложных математических операций.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Последовательное и параллельное соединения проводников

1. Потребители электрической энергии: электрические лампочки, резисторы и пр. — могут по-разному соединяться друг с другом в электрической цепи. Существует два основных типа соединения проводников: последовательное и параллельное. При последовательном соединении проводников конец одного проводника соединяется с началом другого проводника, а его конец — с началом третьего и т.д. (рис. 85).

Примером последовательного соединения проводников может служить соединение электрических лампочек в ёлочной гирлянде.

При последовательном соединении проводников ток проходит через все лампочки, при этом через поперечное сечение каждого проводника в единицу времени проходит одинаковый заряд, т.е. заряд не скапливается ни в какой части проводника. Поэтому при последовательном соединении проводников сила тока в любом участке цепи одинакова: ​ \( I_1=I_2=I \) ​.

Общее сопротивление последовательно соединённых проводников равно сумме их сопротивлений: ​ \( R_1=R_2=R \) ​. Это следует из того, что при последовательном соединении проводников их общая длина увеличивается, она больше, чем длина каждого отдельного проводника, соответственно увеличивается и сопротивление проводников.

По закону Ома напряжение на каждом проводнике равно: ​ \( U_1=IR_1 \) ​, ​ \( U_2=IR_2 \) ​, а общее напряжение равно ​ \( U=I(R_1+R_2) \) ​. Поскольку сила тока во всех проводниках одинакова, а общее сопротивление равно сумме сопротивлений проводников, то полное напряжение на последовательно соединённых проводниках равно сумме напряжений на каждом проводнике: ​ \( U=U_1+U_2 \) ​.

Из приведённых равенств следует, что последовательное соединение проводников используется в том случае, если напряжение, на которое рассчитаны потребители электрической энергии, меньше общего напряжения в цепи.

2. Примером параллельного соединения проводников служит соединение потребителей электрической энергии в квартире. Так, электрические лампочки, чайник, утюг и пр. включаются параллельно.

При параллельном соединении проводников все проводники одним своим концом присоединяются к одной точке цепи (А), а вторым концом к другой точке цепи (В) (рис. 86).

Поэтому вольтметр, подключенный к этим точкам, покажет напряжение как на проводнике 1, так и на проводнике 2. Таким образом, напряжение на концах всех параллельно соединённых проводников одно и то же: ​ \( U_1=U_2=U \) ​.

При параллельном соединении проводников электрическая цепь разветвляется, в данном случае в точке В. Поэтому часть общего заряда проходит через один проводник, а часть — через другой. Следовательно при параллельном соединении проводников сила тока в неразветвлённой части цепи равна сумме силы тока в отдельных проводниках: ​ \( I=I_1+I_2 \) ​.

В соответствии с законом Ома ​ \( I=\frac \) ​, \( I_1=\frac \) , \( I_2=\frac \) . Отсюда следует: ​ \( \frac=\frac+\frac \) ​. Так как ​ \( U_1=U_2=U \) ​, \( \frac<1>=\frac<1>+\frac<1> \) . Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника.

При параллельном соединении проводников их общее сопротивление меньше, чем сопротивление каждого проводника. Действительно, если параллельно соединены два проводника, имеющие одинаковое сопротивление ​ \( r \) ​, то их общее сопротивление равно: ​ \( R=r/2 \) ​. Это объясняется тем, что при параллельном соединении проводников как бы увеличивается площадь их поперечного сечения, соответственно уменьшается сопротивление.

Из приведённых формул понятно, почему потребители электрической энергии включаются параллельно: они все рассчитаны на определённое одинаковое напряжение, которое в квартирах равно 220 В. Зная сопротивление каждого потребителя, можно рассчитать силу тока в каждом из них и соответствие суммарной силы тока предельно допустимой силе тока.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке изображёна схема участка электрической цепи АВ. В эту цепь параллельно включены два резистора сопротивлением ​ \( R_1 \) ​ и ​ \( R_2 \) ​. Напряжения на резисторах соответственно ​ \( U_1 \) ​ и ​ \( U_2 \) ​.

По какой из формул можно определить напряжение U на участке АВ?

2. На рисунке изображёна схема электрической цепи, содержащая два параллельно включённых резистора сопротивлением ​ \( R_1 \) ​ и ​ \( R_2 \) ​. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

1) ​ \( I=I_1=I_2 \) ​
2) \( I=I_1+I_2 \)
3) \( U=U_1+U_2 \)
4) \( R=R_1+R_2 \)

3. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением R> и R2. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

4. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением ​ \( R_1 \) ​ и ​ \( R_2 \) ​. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

5. На рисунке изображена схема электрической цепи. В эту цепь параллельно включены два одинаковых резистора сопротивлением ​ \( R_1 \) ​. По какой из формул можно определить общее сопротивление цепи ​ \( R \) ​?

6. Общее сопротивление участка цепи, изображённого на рисунке, равно 9 Ом. Сопротивления резисторов ​ \( R_1 \) ​ и ​ \( R_2 \) ​ равны. Чему равно сопротивление каждого резистора?

1) 81 Ом
2) 18 Ом
3) 9 Ом
4) 4,5 Ом

7. Чему равно сопротивление участка цепи, содержащего три последовательно соединенных резистора сопротивлением по 9 Ом каждый?

1) 1/3 Ом
2) 3 Ом
3) 9 Ом
4) 27 Ом

8. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если ​ \( R_1 \) ​ = 1 Ом, ​ \( R_2 \) ​ = 10 Ом, ​ \( R_3 \) ​ = 10 Ом, ​ \( R_4 \) ​ = 5 Ом?

1) 9 Ом
2) 11 Ом
3) 16 Ом
4) 26 Ом

9. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если \( R_1 \) = 1 Ом, \( R_2 \) = 3 Ом, \( R_3 \) = 10 Ом, \( R_4 \) = 10 Ом?

1) 9 Ом
2) 10 Ом
3) 14 Ом
4) 24 Ом

10. Если ползунок реостата (см. схему) переместить влево, то сила тока

1) в резисторе ​ \( R_1 \) ​ уменьшится, а в резисторе ​ \( R_2 \) ​ увеличится
2) увеличится в обоих резисторах
3) в резисторе ​ \( R_1 \) ​ увеличится, а в резисторе ​ \( R_2 \) ​ уменьшится
4) уменьшится в обоих резисторах

11. На рисунке изображена электрическая цепь, состоящая из источника тока, резистора и реостата. Как изменяются при передвижении ползунка реостата вправо его сопротивление, сила тока в цепи и напряжение на резисторе 1?

Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) сопротивление реостата 2
Б) сила тока в цепи
B) напряжение на резисторе 1

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

12. Установите соответствие между физическими величинами и правильной электрической схемой для измерения этих величин при последовательном соединении двух резисторов ​ \( R_1 \) ​ и \( R_2 \) . Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) сила тока в резисторе \( R_1 \) ​ и \( R_2 \)
Б) напряжение на резисторе \( R_2 \)
B) общее напряжение на резисторах \( R_1 \) ​ и \( R_2 \)

Часть 2

13. Три резистора соединены, как показано на рисунке. Сопротивления резисторов ​ \( R_1 \) ​ = 10 Ом, \( R_2 \) = 5 Ом, \( R_3 \) = 5 Ом. Каково напряжение на резисторе 1, если амперметр показывает силу тока 2 А?

Источник

Читайте также:  Датчик напряжения сети 220 ethernet
Оцените статью
Adblock
detector