Напряжение пробоя диода как определить

Максимальная рассеиваемая мощность и обратное напряжение на диоде

При использовании полупроводниковых приборов следует соблюдать осторожность и не допускать слишком больших напряжений или токов, которые могли бы испортить прибор. В этой статье мы рассмотрим некоторые факторы, лимитирующие максимальные напряжение и ток на примере диода.

Полупроводниковый диод — один из самых важных и используемых электронных компонентов в электронике. Полупроводниковый диод является двухполюсником, содержащим один р—n переход.

Выводы диода называются «анод» и «катод» (эти названия заимствованы у вакуумных диодов). Если анод положителен по отношению к катоду, то на диод подано прямое смещение , при этом через диод протекает прямой ток. При обратном смещении катод более положителен, чем анод . О братный ток при этом ограничен малым током насыщения.

Подробно про диоды и их применение:

Полупроводниковые диоды, используемые в компьютерной плате 1970-х годов (внизу справа и слева от синего конденсатора)

Вольт-амперная характеристика германиевых и кремниевых диодов

Напряжение смещения Vd считается положительным на аноде и отрицательным на катоде. Таким образом, диод находится под прямым смещением, когда анод положительный, а катод отрицательный по отношению к аноду. В обратном случае говорят об обратной поляризации.

Ток, протекающий в диоде (Id), называется прямым, если он течет от анода к катоду (условное направление тока). Если диод смещен в обратном направлении, он не будет проводить ток, если напряжение не будет достаточно высоким, чтобы превысить напряжение пробоя.

Напряжение прямого смещения варьируется в зависимости от материала, используемого в конструкции, оно составляет 0,2 В для германия (VsdGe) и 0,6 В для кремния (VsdSi).

На приведенном выше графике, чтобы значения были удобочитаемыми, были приняты две разные шкалы: одна для первого квадранта декартовой плоскости, а другая — для третьего. Это связано с тем, что значение тока If обратной утечки чрезвычайно низкое, в то время как напряжение обратного пробоя VbSi и VbGe чрезвычайно велико.

Диоды по своему применению обычно классифицируются в зависимости от того, какие из трех областей характеристики диода используются. Так, например, для переключения и выпрямления используется как прямая, так и обратная ветви характеристики диода. При этом, чтобы избежать нежелательного эффекта пробоя, следует выбирать диод с достаточно большим напряжением пробоя.

В свою очередь, область обратного пробоя используется главным образом в источниках опорного напряжения. Диод в этом случае выбирается по величине обратного напряжения, при которой происходит пробой. Эффектом обратного пробоя можно пренебречь, за исключением тех случаев, в которых область обратного пробоя характеристики используется специально.

Максимальная рассеиваемая мощность

Основным недостатком любого элемента электрической схемы является его разогрев. В резистивных элементах рассеиваемая мощность переходит в тепло, которое увеличивает температуру элемента по сравнению с окружающей. Максимальная температура, которую может выдержать прибор, характеризует его способность отдавать выделившееся тепло в окружающую среду и определяет максимально допустимую мощность рассеяния для прибора.

Максимальная температура прибора зависит от нескольких факторов: от изменения свойств полупроводника с температурой, плавления припоев, применяемых при изготовлении приборов, механического разрушения структуры вследствие неравных коэффициентов теплового расширения.

В кремниевых приборах максимальная температура составляет около 200 °С, а для германиевых редко превышает 100 °С. Способность отдавать тепло зависит от конструкции прибора и от способа его крепления.

Улучшение теплоотдачи достигается при монтаже приборов на ребристый теплоотвод и при применении принудительного воздушного или даже жидкостного охлаждения. Так или иначе, приборы и их арматура способны рассеивать определенную мощность без превышения максимально допустимой, температуры.

Максимально допустимая мощность рассеяния ограничивает величину произведения тока на напряжение в приборе.

Границы максимально допустимой мощности на плоскости напряжение — ток

Если построим график соотношения на плоскости напряжение — ток, то получим гиперболы в первом и третьем квадрантах, определяющие границы допустимой мощности рассеяния в приборе. Бели рабочая точка диода пересекает эту границу и выходит из области безопасной работы, то прибор перегревается и его функционирование нарушается.

Обратное напряжение на диоде

В то время как максимальная рассеиваемая мощность устанавливает абсолютные пределы, за которыми происходят необратимые разрушения приборов, имеются другие явления (не обязательно разрушающие), которые приводят к значительным отклонениям характеристик диодов.

Одно из таких явлений, называемое пробоем, при обратном напряжении, ограничивает обратное напряжение, которое может выдержать диод прежде, чем начнется сильное увеличение обратного тока.

При увеличении обратного напряжения на диоде ток, достигнув значения обратного тока насыщения, остается постоянным, а электрическое поле в области объемного заряда растет. Увеличение напряженности электрического поля приводит к увеличению скорости подвижных носителей, пересекающих область объемного заряда и создающих обратный ток.

В некоторый момент скорость носителей становится такой, что при соударении вырываются добавочные электроны из ковалентньгх связей в области объемного заряда, при этом возникают дырки и свободные электроны. Эти новые носители увеличивают обратный ток и могут в свою очередь при соударениях порождать дополнительные подвижные электроны и дырки.

Этот процесс, называемый зенеровским пробоем или внутренней автоэлектронной эмиссией, приводит к тому же результату, что и лавинное размножение: быстрому увеличению обратного тока при превышении определенной величины обратного напряжения. Как правило, зенеровекий пробой преобладает в диодах, которые пробиваются при напряжениях ниже 6 В, а лавинное умножение преобладает в диодах, пробивное напряжение которых выше 6 В.

Очевидно, что пробой сильно влияет на вольт-амперную характеристику диода. Так, если требуется, чтобы диод не пропускал обратного тока, следует выбирать прибор, обратное напряжение которого больше, чем напряжение в схеме, которое может быть подано на диод в обратном направлении.

Хотя термин «пробой» подразумевает разрушение, на самом деле это не всегда так. Диод может работать в области пробоя и даже при напряжениях, значительно превышающих напряжение пробоя, без необратимых изменений, если только не превышается максимально допустимая мощность рассеяния.

Полупроводниковые диоды трех разных типов в плате видеорегистратора. Обратите внимание на аббревиатуры, напечатанные на печатной плате с начальной буквой «D» для диода.

Современные полупроводниковые диоды

Силовые диоды в виде диодного моста для винтового монтажа (обратите внимание на отверстие под болт), подходящего для монтажа на радиаторе.

Диоды Зенера (стабилитроны)

В области пробоя ток через диод почти не зависит от напряжения. Простая линейная модель диода в области пробоя содержит только батарею, напряжение которой равно напряжению пробоя диода. Поэтому если в каком-то месте схемы требуется поддерживать постоянное напряжение, то можно использовать диод, работающий в области пробоя.

Диоды, предназначенные для этого вида работы, называются опорными диодами, диодами Зенера или стабилитронами, хотя механизм пробоя в них может быть и зенеровским, и лавинным. Аналогично напряжение, при котором происходит пробой, часто называют зенеровским напряжением.

Стабилитрон представляет собой полупроводниковый диод, который использует обратное смещение и напряжение пробоя в качестве опорного напряжения

По сути, это стабилизатор напряжения. Стабилитрон диод чувствителен к температуре. Для напряжений стабилитрона ниже 5 вольт по мере увеличения температуры напряжение уменьшается, в то время как напряжения стабилитрона выше 6 вольт, когда температура увеличивается, напряжение стабилитрона увеличивается.

Само собой разумеется, что диоды с напряжением около 5-6 В по своей природе более стабильны. Обычно номинальное напряжение измеряется при температуре 25 ° C.

В поисках термостабильности, необходимой в некоторых приложениях, можно последовательно соединить стабилитроны различных типов с противоположными температурными коэффициентами, чтобы колебания напряжения компенсировали друг друга.

Для этого можно использовать и обычные диоды в прямой поляризации, включенные последовательно с стабилитроном, при условии, что они имеют тепловой коэффициент, противоположный таковому у стабилитрона.

Диоды Зенера могут быть соединены последовательно для получения более высоких напряжений. Результирующее напряжение будет суммой отдельных последовательно включенных стабилитронов. Очевидно, что невозможно подключить их параллельно (для увеличения управляемого тока), даже если они имеют одинаковое номинальное напряжение.

Стабилитрон, установленный на алюминиевом радиаторе в электронном приборе 70-х годов

Стабилитроны имеют напряжения пробоя от 2,4 до 200 В. Рядом с символом такого диода часто записывают напряжение пробоя. Изготовители указывают также минимальный обратный ток, при котором должен работать опорный диод, чтобы обеспечить наступление пробоя. Максимальный ток ограничивается максимально допустимой мощностью рассеяния.

Источник

Пробой диода.

При обратном напряжении диода свыше определенного критического значения наблюдается резкий рост обратного тока (рис. 1.5). Это явление называют пробоем диода. Пробой диода возникает либо в результате воздействия сильного электрического поля в р-n-переходе (рис.1.5, кривая 1 и 2). Такой пробой называется электрическим. Он может быть туннельным – кривая 2 или лавинным – кривая 1. Либо пробой возникает в результате разогрева p-n-перехода при протекании тока большого значения и при недостаточном теплоотводе, необеспечивающем устойчивость теплового режима перехода (рис. 1.5, кривая 3). Такой пробой называется тепловым пробоем. Электрический пробой обратим, т. е. он не приводит к повреждению диода, и при снижении обратного напряжения свойства диода сохраняются. Тепловой пробой является необратимым. Нормальная работа диода в качестве элемента односторонней проводимостью возможна лишь в режимах, когда обратное напряжение не превышает пробивного значения Uо6р mах. Значение допустимого обратного напряжения устанавливается с учетом исключения возможности электрического пробоя и составляет (0,5 — 0,8) Uпроб .

Емкости диода. Принято говорить об общей емкости диода Сд , измеренной между выводами диода при заданном напряжении смещения и частоте. Общая емкость диода равна сумме барьерной емкости С6 , диффузионной емкости Сдиф и емкости корпуса прибора Ск (рис.1.6).

Барьерная (зарядная) емкость обусловлена нескомпенсированным объемным зарядом ионов примесей, сосредоточенными по обе стороны от границы р-n-перехода.

Модельным аналогом барьерной емкости может служить емкость плоского конденсатора, обкладками которого являются р- и n-области, а диэлектриком служит р-n-переход, практически не имеющий подвижных зарядов. Значение барьерной емкости колеблется от десятков до сотен пикофарад; изменение этой емкости при изменении напряжения может достигать десятикратной величины.

Диффузионная емкость. Изменение величины объемного заряда неравновесных электронов и дырок, вызванное изменением прямого тока, можно рассматривать как следствие наличия так называемой диффузионной емкости, которая включена параллельно барьерной емкости.

Значения диффузионной емкости могут иметь порядок от сотен до тысяч пикофарад. Поэтому при прямом напряжении емкость р-n-перехода определяется преимущественно диффузионной емкостью, а при обратном напряжении — барьерной емкостью.

Диоды обычно характеризуются следующими параметрами (рис. 2.3):

обратный ток при некоторой величине обратного напряжения Iобр, мкА;

падение напряжения на диоде при некотором значении прямого тока через диод Uпр, в;

емкость диода при подаче на него обратного напряжения некоторой величины С, пФ;

диапазон частот, в котором возможна работа без снижения выпрямленного тока fгр, кГц;

Диоды разных типов отличаются своими параметрами и характеристиками. К основным параметрам диода относятся: напряжение накала Uн ток накала Iн, ток эмиссии Iэ, анодное напряжение Uа. Кроме того, диоды различаются по крутизне их характеристики. Чем быстрее нарастает анодный ток диода при увеличении анодного напряжения, тем больше крутизна характеристики диода. Крутизну обозначают S она показывает, на сколько миллиампер увеличивается сила анодного тока диода при повышении анодного напряжения на 1 в:

(155)

где ∆Ia— изменение силы анодного тока,

∆Ua — изменение анодного напряжения.

Так, если крутизна диода S —3 ма/в, то это значит, что при увеличении анодного напряжения на 1 в сила анодного тока возрастет на 3 ма.

К параметрам, которыми характеризуется диод, относится также величина его внутреннего сопротивления переменному току. Внутреннее сопротивление диода не постоянно, а зависит от величины и полярности анодного напряжения, приложенного к диоду. Например, когда к аноду приложено отрицательное напряжение, его внутреннее сопротивление практически бесконечно велико и ток через диод не проходит. Наименьшим

внутренним сопротивлением диод обладает в пределах средней прямолинейной части Характеристики, где крутизна имеет наибольшее значение. В нижней части характеристики и в верхней части внутреннее сопротивление лампы увеличивается.

Внутреннее сопротивление лампы обозначается Я;. Оно равна отношению изменения анодного напряжения (∆Ua) к соответствующему изменению анодного тока:

Весьма важным параметром, характеризующим каждую лампу, является величина допустимой мощности рассеяния на аноде. Электроны под влиянием напряжения, приложенного к аноду, развивают большую скорость и поэтому со значительной силой ударяются в него. При этом анод, нагреваясь, может раскалиться и даже расплавиться. Чем больше анодное напряжение, тем больше скорость электронов. Чем больше ток, проходящий через диод, тем большее число электронов одновременно ударяет в анод. Поэтому количество тепла, выделяемого на аноде, зависит от анодного напряжения и анодного тока. Произведение этих двух величин равно мощности рассеяния на аноде:

Выделение тепла на аноде — бесполезная, но неизбежная потеря мощности. При очень сильном нагревании анода лампа выходит из строя. Ввиду этого мощность рассеяния не должна превышать некоторую допустимую для данного типа лампы величину.

Техническими условиями задаются обычно максимальные (или минимальные) значения параметров для диодов каждого типа. Так, например, задается максимально возможное значение обратного тока, прямого падения напряжения и емкости диода. Диапазон частот задается минимальным значением граничной частоты fгр. Это значит, что параметры всех диодов не превышает (а в случае частоты – не ниже) заданного техническими условиями значения.

Обозначение диодов состоит из шести символов:

§ первый символ (буква или цифра) обозначает материал диода (цифрой обозначаются диоды, способные выдерживать более высокую температуру):

Г или 1 – германий;
К или 2 – кремний;
А или 3 – соединения галлия;

§ второй символ (буква) указывает подкласс приборов:

А – сверхвысокочастотный ; Б – с объёмным эффектом Ганна; В – варикапы; Г – генераторы шума; Д – выпрямительные, универсальные, импульсные; И – туннельные и обращенные; К – стабилизаторы тока; Л – излучающие; Н – динисторы; С – стабилитроны стабисторы; У – тиристоры; Ц – выпрямительные столбы и блоки;

§ третий символ (цифра) обозначает классификационный номер, по которому различают диоды внутри данного типа (например: 1 – малой мощности, 2 – средней мощности, 3 – большой мощности, 4 – универсальные и т.д).

§ четвертый и пятый символы (цифры) обозначают порядковый номер разработки (от 1 до 99).

§ шестой символ (буква), указывает различие по параметрам, которые не являются классификационными.

Классификация и система обозначений. Классификация современных полупроводниковых диодов (ПД) по их назначению, физическим свойствам, основным электрическим параметрам, конструктивно-технологическим признакам, исходному полупроводниковому материалу находит отражение в системе условных обозначений диодов в соответствии с ГОСТ 20859.1-89.

Первый элемент (цифра или буква) обозначает исходный полупроводниковый материал, второй (буква) – подкласс приборов, третий (цифра) – основные функциональные возможности прибора, четвертый – число, обозначающее порядковый номер разработки, пятый элемент – буква, условно определяющая классификацию (разбраковку по параметрам) приборов, изготовленных по единой технологии.

Для обозначения исходного полупроводникового материала используются следующие символы:

Г, или 1 – германий или его соединения; К, или 2 – кремний или его соединения; А, или 3 – соединения галлия; И, или 4 – соединения индия.

Для обозначения подклассов диодов используется одна из следующих букв:

Д – диоды выпрямительные и импульсные; Ц – выпрямительные столбы и блоки; В – варикапы; И – туннельные диоды; А – сверхвысокочастотные диоды; С – стабилитроны; Г – генераторы шума; Л – излучающие оптоэлектронные приборы; О – оптопары.

в зависимости от назначения:

выпрямительные; стабилитроны; варикапы; туннельные; импульсные и др.;

по применяемым исходным материалам:

германиевые; кремниевые; из арсенида галлия;

по технологии изготовления:

сплавные; диффузионные; планарные;

низкочастотные; высокочастотные; СВЧ-диоды (сверхвысокочастотные диоды);

Стабилитроны– это кремниевые плоскостные диоды, предназначенные для стабилизации уровня постоянного напряжения в схеме при изменении в некоторых пределах тока через диод. Это полупроводниковый диод, сконструированный для работы в режиме электрического пробоя. Как отмечалось в разд. 1.2, если обратное напряжение превышает значение Uобр. пр,то происходит лавинный пробой рn-перехода, при котором обратный ток резко возрастает при почти неизменном обратном напряжении. Такой участок характеристики (участок аб, см. рис. 1.8, а) используют стабилитроны, нормальным включением которых в цепь источника постоянного напряжения является обратное (см. рис. 1.8, б). Если обратный ток через стабилитрон не превышает некоторого значения Iст. макс, то состояние электрического пробоя не приводит к порче диода и может воспроизводиться в течение десятков и сотен тысяч часов. В качестве исходного материала при изготовлении стабилитронов используют кремний, поскольку обратные токи кремниевых р-n-переходов невелики, а следовательно, нет условий для саморазогрева полупроводника и теплового пробоярn-перехода.

Основные параметры стабилитрона:

номинальное напряжение стабилизации Uст ном — напряжение на стабилитроне в рабочем режиме (при заданном токе стабилизации);

минимальный ток стабилизации Iст.min — наименьшее значение тока стабилизации, при котором режим пробоя устойчив;

максимально допустимый ток стабилизации Iст.max наибольший ток стабилизации, при котором нагрев стабилитронов не выходит за допустимые пределы.

Дифференциальное сопротивление гст — отношение приращения напряжения стабилизации к вызывающему его приращению тока стабилизации: гст=DUст/DIст.

К параметрам стабилитронов также относят максимально допустимый прямой ток Imax, максимально допустимый импульсный ток Iпр.и max , максимально допустимую рассеиваемую мощностьР max .

(ТКН) – температурный коэффициент напряжения стабилизации.

Уровень напряжения стабилизации определяется величиной пробивного напряжения Uобр. пр, зависящего, в свою очередь, от ширинырn-перехода, а следовательно, степени легирования кремния примесью. Для получения низковольтных стабилитронов используется сильнолегированный кремний. Поэтому у стабилитронов с напряжением стабилизации 10 А) мощности. Для повышения допустимого обратного напряжения выпускаются высоковольтные столбы, в которых несколько диодов включены последовательно. Кроме того, производством серийно выпускаются выпрямительные блоки, которые содержат как последовательно, так и параллельно (для повышения прямого тока) соединенные диоды.

Рис. 1.11 Конструкция (а) и вольтамперная характеристика (б) точечного диода

Выпрямительные диоды используют для выпрямления переменных токов частотой 50 Гц – 100 кГц. В них используется главное свойство p-n-перехода – односторонняя проводимость. Главная особенность выпрямительных диодов большие площади p-n-перехода, поскольку они рассчитаны на выпрямление больших по величине токов. Основные параметры выпрямительных диодов даются применительно к их работе в однополупериодном выпрямителе с активной нагрузкой (без конденсатора, сглаживающего пульсации).

Среднее прямое напряжение Uпр..ср — среднее за период прямое напряжение на диоде при протекании через него максимально допустимого выпрямленного тока.

Средний обратный ток Iобр. ср — средний за период обратный ток, измеряемый при максимальном обратном напряжении.

Максимально допустимое обратное напряжение Uобр. mах (Uобр. и mах) – наибольшее постоянное (или импульсное) обратное напряжение, при котором диод может длительно и надежно работать.

Максимально допустимый выпрямленный ток Iвп. ср mах — средний за период ток через диод (постоянная составляющая), при котором обеспечивается его надежная длительная работа.

Превышение максимально допустимых величин ведет к резкому сокращению срока службы или пробою диода.

Максимальная частота fтах — наибольшая частота подводимого напряжения, при которой выпрямитель на данном диоде работает достаточно эффективно, а нагрев диода не превышает допустимой величины.

В выпрямительном устройстве энергия переменного тока преобразуется в энергию постоянного тока за счет односторонней проводимости диодов.

На рис. 5 приведена схема однополупериодного выпрямителя. Работа выпрямителя происходит следующим образом. Если генератор вырабатывает синусоидальное напряжение,

то в течение положительного (+) полупериода напряжение для диода является прямым, его сопротивление мало, и через резистор проходит ток, который создает на резисторе RН падение напряжения Uвых , повторяющее входное напряжение e(t). В следующий, отрицательный () полупериод, напряжение для диода является обратным, сопротивление диода велико, тока практически нет и, следовательно, Uвых = 0. Таким образом, через диод и RН протекает пульсирующий выпрямленный ток. Он создает на резисторе RН пульсирующее выпрямленное напряжение Uвых .

Полезной частью выпрямленного напряжения является его постоянная составляющая или среднее значение U ср (за полупериод):

Таким образом, U ср составляет около 30% от максимального значения.

Выпрямленное напряжение обычно используется в качестве напряжения питания электронных схем.

Источник

Читайте также:  Стабилизатор напряжения райдер 10000ва
Оцените статью
Adblock
detector