Напряжение в форме меандра

Синус или меандр?

Cистемы автономного и бесперебойного питания, как правило, используются для обеспечения работы аппаратуры с питанием 220 В. В этом случае остро стоит вопрос обеспечения электропитания 220 В.
Как только речь заходит о мощности 220 В надо четко понимать, что существуют две единицы измерения мощности — ватты (Вт), и вольт-амперы (ВА).
1 Вт = 1.4 ВА или 1ВА = 0.7 Вт

Как правило, на блоках и инверторах указывают значения в вольт-амперах. Поэтому, чтобы получить значение максимальной мощности в Ваттах, эту величину надо поделить на 1,4. При этом мощность потребителя электроэнергии может быть указана в зависимости от типа прибора в любой из двух единиц. Скажем, обычная лампа накаливания имеет номинал в ваттах. Т.е. лампочку 100 Вт нельзя подключать к ББП или Инвертору с номиналом 100 ВА, а только не менее чем к 150 ВА.

Инверторы и Блоки бесперебойного питания (ББП) можно классифицировать по форме выходного напряжения — синус или модифицированный синус (меандр с паузами).

Синус или меандр?

Большинство потребителей даже и не задумываются какова форма выходного напряжения данного прибора. А ведь большинство представленных на рынке приборов выдают не «чистый синус», а так называемый «модифицированный синус» (такие приборы гораздо дешевле «синусоидальных»).

Модифицированный синус — это приближения к синусоидальному сигналу с помощью сигналов «прямоугольной’» формы. Самое грубое, но простое приближение — это меандр — сигнал прямоугольной формы переменной полярности (рис. 1). Причем речь идет о передаче энергетики сигнала, т.е. о равенстве эффективного значения напряжения (площади под кривой напряжения). Как следствие, амплитуды двух сигналов — синуса и меандра отличаются. Чтобы получить Uэфф=220 В меандр должен иметь амплитуду 220 В, а синус имеет амплитуду 311 В.

На практике меандр не применяется, т.к. в момент резкой смены полярности возникают очень неприятные эффекты в аппаратуре. Применяют обычно меандр с паузой, или так называемый «модифицированный синус» (рис.2).

Более дорогие устройства используют более качественные приближения к синусу путем увеличения количества ступенек. На рис. 3 показан следующий уровень приближения. Увеличивая количество ступенек, мы постепенно получим сигнал, практически по своей форме мало отличающийся от синуса.

Чем синус лучше модифицированного синуса?

Существует аппаратура, для которой форма сигнала важна. Прежде всего, это аппаратура, чувствительная к помехам, аппаратура с трансформаторными источниками питания, электродвигатели, компрессоры и т.д. Есть потребители, которые нечувствительны к форме сигнала — это лампы накаливания, простые нагревательные приборы, приборы с бестрансформаторными импульсными источниками питания (компьютеры, современные телевизоры).

Что происходит, когда на трансформаторный источник питания подается модифицированный синус?

Резко снижается КПД трансформатора, в результате чего он начинает перегреваться и может выйти из строя. Кроме того, плохой (как правило, китайский подпольного производства) трансформатор начнет давать при работе посторонние звуки. Эта проблема не актуальна, когда мощность трансформатора заведомо существенно выше требуемой, но такие ситуации встречаются только в устройствах с очень малым потреблением (несколько ватт). Начиная с устройств, потребляющих 10 Вт трансформатор, как правило, оптимизирован, и использовать с такими потребителями прибор с модифицированным синусом не рекомендуется. Электродвигатели дают тот же эффект — снижение КПД, перегрев и посторонние звуки.
Не рекомендуют применять модифицированный синус для питания чувствительной аппаратуры (например, медицинской), т.к. модифицированный синус — верный источник помех.

Как определить форму выходного сигнала?

Конечно, прочитав паспорт. Если выходная форма синусоидальная, то производитель обязательно так и напишет. А фразы типа «квазисинус» или «модифицированный синус»указывают на несинусоидальную форму выходного сигнала. Иногда в паспорте указывается коэффициент гармоник. Если он меньше 8 %, то это почти идеальный синус.
Стоит заметить, что при одинаковой выходной мощности, цена преобразователя с синусом на выходе будет как минимум в 2 раза выше!

С покупкой обычного компьютерного UPS(источника бесперебойного питания) проблем нет — это проще сделать в любой компьютерной фирме. С хорошим мощным инвертором ситуация гораздо сложнее. Купить качественный прибор будет довольно непросто — очень мало фирм в России занимаются подобной техникой (одна из лучших — «Свободная Энергия»).
Хорошо налажено производство и поставки 220 В мощных инверторов, предназначенных для обеспечения питания систем связи, но удовлетворение очень высоких технических требований Минсвязи приводит к тому, что стоит подобная техника достаточно недешево.

Источник

Виды электрических сигналов

Цель рассказа показать в чем суть понятия «сигнал», какие распространённые сигналы существуют и какие у них общие характеристики.

Что такое сигнал? На этот вопрос даже маленький ребёнок скажет, что это «такая штука, с помощью которой можно что-нибудь сообщить». Например, с помощью зеркала и солнца можно передавать сигналы на расстояние прямой видимости. На кораблях, сигналы когда-то передавали с помощью флажков-семафоров. Занимались этим специально обученые сигнальщики. Таким образом с помощью таких флажков передавалась информация. Вот как можно передать слово «сигнал»:

Читайте также:  Сигнализация пандора низкое напряжение

В природе существует огромное множество сигналов. Да по сути что угодно может быть сигналом: оставленная на столе записка, какой-нибудь звук — могут служить сигналом к началу определённого действия.

Ладно, с такими сигналами всё понятно поэтому перейду к электрическим сигналам, которых в природе не меньше чем любых других. Но их хотя бы можно как-то условно разбить на группы: треугольный, синусоидальный, прямоугольный, пилообразный, одиночный импульс и т.д. Все эти сигналы названы так за то, как они выглядят, если их изобразить их на графике.

Сигналы могут быть использованы как метроном для отсчета тактов (в качестве тактирующего сигнала), для отсчета времени, в качестве управляющих импульсов, для управления двигателями или для тестирования оборудования и передачи информации.

Характеристики эл. сигналов

В некотором смысле электрический сигнал — это график, отражающий изменение напряжения или тока с течением времени. Что по-русски означает: если взять карандаш и по оси Х отметить время, а по Y напряжение или ток, и отметить точками соответствующие значения напряжения в конкретные моменты времени, то итоговое изображение будет показывать форму сигнала:

Электрических сигналов очень много, но их можно разбить на две большие группы:

Т.е. в однонаправленных ток течет в одну сторону (либо не течет вообще), а в двунаправленных ток является переменным и протекает то «туда», то «сюда».

Все сигналы, независимо от типа, обладают следующими характеристиками:

  • Период — промежуток времени, через который сигнал начинает повторять себя. Обозначается чаще всего T
  • Частота— обозначает сколько раз сигнал повториться за 1 секунду. Измеряется в герцах. К примеру 1Гц = 1 повторение в секунду. Частота является обратным значением периода ( ƒ = 1/T )
  • Амплитуда — измеряется в вольтах или амперах (в зависимости от того какой сигнал: ток или напряжение). Амплитуда обозначает «силу» сигнала. Как сильно отклоняется график сигнала от оси Х.

Виды сигналов

Синусоида

Думаю, что представлять функцию, чей график на картинке выше нет смысла — это хорошо тебе известная sin(x). Её период равен 360 o или 2pi радиан (2pi радиан =360 o ).

А если разделить поделить 1 сек на период T, то ты узнаешь сколько периодов укалдывается в 1 сек или, другими словами, как часто период повторяется. То есть ты определишь частоту сигнала! Кстати, она указывается в герцах. 1 Гц = 1 сек / 1 повтор в сек

Частота и период обратны друг другу. Чем длинней период, тем меньше частота и наоборот. Связь между частотой и периодом выражается простыми соотношениями:

Суфикс Полное значение Сокращение Обозначает время
Кило Тысяча (Килогерц) КГц 1 миллисекунда (10 -3 )
Мега Миллион (Мегагерц) МГц 1 микросекунда (10 -6 )
Гига Миллиард (Гигагерц) ГГц 1 наносекунда (10 -9 )
Тера Триллион (Терагерц) ТГц 1 пикосекунда (10 -12 )

Меандр

Сигналы, которые по форме напоминают прямоугольники, так и называют «прямоугольные сигналы». Их условно можно разделить на просто прямоугольне сигналы и меандры. Меандр — это прямоугольный сигнал, у которого длительность импульса и паузы равны. А если сложить длительность паузы и импульса, то получим период меандра.

Прямоугольный сигнал

Обычный прямоугольный сигнал отличается от меандра тем, что имеет разную длительность импульса и паузы (отсутствие импульса). Смотри картинку ниже — она скажет лучше тысячи слов.

Кстати, для прямоугольных сигналов существует еще два термина, которые следует знать. Они обратны друг другу (как период и частота). Это скажность и коээффициент заполнения. Скажность (S)равняется отношению периода к длительности импульса и наоборот для коэфф. заполнения.

Таким образом меандр — это прямоугольный сигнал со скважностью равной 2. Так как у него период в два раза больше длительности импульса.


S — скважность, D — коэффициент заполнения, T — период импульсов, — длительность импульса.

Кстати, на графиках выше показаны идеальные прямоугольные сигналы. В жизни они выглядят слегка иначе, так как ни в одном устройстве сигнал не может измениться абсолютно мгновенно от 0 до какого-то значения и обратно спуститься до нуля.

Треугольный сигнал

Если подняться на гору, а затем сразу спуститься и записать изменение высоты нашего положения на графике, то получим треугольный сигнал. Груое сравнение, но правдивое. В треугольный сигналах напряжение (ток) сначала возрастает, а затем тут же начинает уменьшаться. И для классического треугольного сигнала время возрастания равно времени убывания (и равно половине периода).

Читайте также:  Как зарядить конденсатор от малого напряжения

Если же у такого сигнала время возрастания меньше или больше времени убывания, то такие сигналы уже называют пилообразными. И о них ниже.

Пилообразный сигнал

Как я уже писал выше, несимметричный треугольный сигнал называется пилообразным. Все эти названи условны и нужны просто для удобства.

Вот такое простое введение в электрические сигналы. В природе их существует множество, но выше описаны те, что в нашем радиолюбительском деле встречаются довольно часто. Надеюсь, что теперь ты будешь больше знать про них.

Источник

Напряжение в форме меандра

Часто в электронных схемах требуется сгенерировать разные типы сигналов, имеющих различные частоты и формы, такие как меандры, прямоугольные, треугольные, пилообразные сигналы и различные импульсы.

Эти сигналы различной формы могут использоваться в качестве сигналов синхронизации, тактирующих сигналов или в качестве запускающих синхроимпульсов. В первую очередь необходимо понять основные характеристики, описывающие электрические сигналы.

С технической точки зрения, электрические сигналы являются визуальным представлением изменения напряжения или тока с течением времени. То есть, фактически — это график изменения напряжения и тока, где по горизонтальной оси мы откладываем время, а по вертикальной оси — значения напряжения или тока в этот момент времени. Существует множество различных типов электрических сигналов, но в целом, все они могут быть разбиты на две основные группы.

  • Однополярные сигналы — это электрические сигналы, которые всегда положительные или всегда отрицательные, не пересекающие горизонтальную ось. К однонаправленным сигналам относятся меандр, тактовые импульсы и запускающие импульсы.
  • Двухполярные сигналы — эти электрические сигналы также называют чередующимися сигналами, так как они чередуют положительные значения с отрицательными, постоянно пересекая нулевое значение. Двухполярные сигналы имеют периодическое изменение знака своей амплитуды. Наиболее распространенным из двунаправленных сигналов, является синусоидальный.

Будучи однонаправленными, двунаправленными, симметричными, несимметричными, простыми или сложными, все электрические сигналы имеют три общие характеристики:

  • Период — это отрезок времени, через который сигнал начинает повторяться. Это временное значение также называют временем периода для синусоид или шириной импульса для меандров и обозначают буквой T.
  • Частота — это число раз, которое сигнал повторяет сам себя за период времени равный 1 секунде. Частота является величиной, обратной периоду времени, (). Единицей измерения частоты является Герц (Гц). Частотой в 1Гц, обладает сигнал, повторяющий 1 раз за 1 cекунду.
  • Амплитуда — это величина изменения сигнала. Измеряется в Вольтах (В) или Амперах (А), в зависимости от того, какую временную зависимость (напряжения или тока) мы используем.

Периодические сигналы

Периодические сигналы являются самыми распространенными, поскольку включают в себя синусоиды. Переменный ток в розетке дома представляет из себя синусоиду, плавно изменяющуюся с течением времени с частотой 50Гц.

Время, которое проходит между отдельными повторениями цикла синусоиды называется ее периодом. Другими словами, это время, необходимое для того, чтобы сигнал начал повторяться.

Период может изменяться от долей секунды до тысяч секунд, так как он связан с его частотой. Например, синусоидальный сигнал, которому требуется 1 секунда для совершения полного цикла, имеет период равный одной секунде. Аналогично, для синусоидального сигнала, которому требуется 5 секунд для совершения полного цикла, имеет период равный 5 секундам, и так далее.

Итак, отрезок времени, который требуется для сигнала, чтобы завершить полный цикл своего изменения, прежде чем он вновь повторится, называется периодом сигнала и измеряется в секундах. Мы можем выразить сигнал в виде числа периодов T в секунду, как показано на рисунке ниже.

Синусоидальный сигнал

Время периода часто измеряется в секундах ( с ), миллисекундах (мс) и микросекундах (мкс).

Для синусоидальной формы волны, время периода сигнала также можно выражать в градусах, либо в радианах, учитывая, что один полный цикл равен 360° (Т = 360°), или, если в радианах, то(T =

Период и частота математически являются обратными друг другу величинами. С уменьшением времени периода сигнала, его частота увеличивается и наоборот.

Соотношения между периодом сигнала и его частотой:

Один герц в точности равен одному циклу в секунду, но один герц является очень маленькой величиной, поэтому часто можно встретить префиксы, обозначающие порядок величины сигнала, такие как кГц, МГц, ГГц и даже ТГц

Префикс Определение Запись Период
Кило тысяча кГц 1 мс
Мега миллион МГц 1 мкс
Гига миллиард ГГц 1 нс
Тера триллион ТГц 1 пс

Меандр

Меандры широко используются в электронных схемах для тактирования и сигналов синхронизации, так как они имеют симметричную прямоугольную форму волны с равной продолжительностью полупериодов. Практически все цифровые логические схемы используют сигналы в виде меандра на своих входах и выходах.

Так как форма меандра симметрична, и каждая половина цикла одинакова, то длительность положительной части импульса равна промежутку времени, когда импульс отрицателен (нулевой). Для меандров, используемых в качестве тактирующих сигналов в цифровых схемах, длительность положительного импульса называется временем заполнения периода.

Читайте также:  Опасное осложнение при воздействии тока напряжением 125 200v

Для меандра, время заполнения

равно половине периода сигнала. Так как частота равна обратной величине периода, (1/T), то частота меандра:

Например, для сигнала с временем заполнения равным 10 мс, его частота равна:

Меандры используются в цифровых системах для представления уровня логической «1» большими значениями его амплитуды и уровня логического «0» маленькими значениями амплитуды.

Если время заполнения, не равно 50% от длительности его периода, то такой сигнал уже представялет более общий случай и называется прямоугольным сигналом. В случае, или если время положительной части периода сигнала мало, то такой сигнал, является импульсом.

Прямоугольный сигнал

Прямоугольные сигналы отличаются от меандров тем, что длительности положительной и отрицательной частей периода не равны между собой. Прямоугольные сигналы поэтому классифицируются как несимметричные сигналы.

В данном случае я изобразил сигнал, принимающий только положительные значения, хотя, в общем случае, отрицательные значения сигнала могут быть значительно ниже нулевой отметки.

На изображенном примере, длительность положительного импульса больше, чем длительность отрицательного, хотя, это и не обязательно. Главное, чтобы форма сигнала была прямоугольной.

Отношение периода повторения сигнала, к длительности положительного импульса

Величину обратную скважности называют коэффициентом заполнения (duty cycle):

Пусть имеется прямоугольный сигнал с импульсом длительностью 10мс и коэффициентом заполнения 25%. Необходимо найти частоту этого сигнала.

Коэффициент заполнения равен 25% или ¼, и совпадает с шириной импульса, которая составляет 10мс. Таким образом, период сигнала должен быть равен: 10мс (25%) + 30мс (75%) = 40мс (100%).

Прямоугольные сигналы могут использоваться для регулирования количества энергии, отдаваемой в нагрузку, такую, например, как лампа или двигатель, изменением скважности сигнала. Чем выше коэффициент заполнения, тем больше среднее количество энергии должно быть отдано в нагрузку, и, соответственно, меньший коэффициент заполнения, означает меньшее среднее количество энергии, отдаваемое в нагрузку. Отличным примером этого является использование широтно-импульсной модуляции в регуляторах скорости. Термин широтно-импульсная модуляция (ШИМ) буквально и означает «изменение ширины импульса».

Треугольные сигналы

Треугольные сигналы, как правило, это двунаправленные несинусоидальные сигналы, которые колеблются между положительным и отрицательным пиковыми значениями. Треугольный сигнал представляет собой относительно медленно линейно растущее и падающее напряжение с постоянной частотой. Скорость, с которой напряжение изменяет свое направление равна для обоих половинок периода, как показано ниже.

Как правило, для треугольных сигналов, продолжительность роста сигнала, равна продолжительности его спада, давая тем самым 50% коэффициент заполнения. Задав амплитуду и частоту сигнала, мы можем определить среднее значение его амплитуды.

В случае несимметричной треугольной формы сигнала, которую мы можем получить изменением скорости роста и спада на различные величины, мы имеем еще один тип сигнала известный под названием пилообразный сигнал.

Пилообразный сигнал

Пилообразный сигнал — это еще один тип периодического сигнала. Как следует из названия, форма такого сигнала напоминает зубья пилы. Пилообразный сигнал может иметь зеркальное отражение самого себя, имея либо медленный рост, но очень крутой спад, или чрезвычайно крутой, почти вертикальный рост и медленный спад.

Пилообразный сигнал с медленным ростом является более распространенным из двух типов сигналов, являющийся, практически, идеально линейным. Пилообразный сигнал генерируется большинством функциональных генераторов и состоит из основной частоты (f) и четных гармоник. Это означает, с практической точки зрения, что он богат гармониками, и в случае, например, с музыкальными синтезаторами, для музыкантов дает качественный звук без искажений.

Импульсы и запускающие сигналы (триггеры)

Хотя, технически, запускающие сигналы и импульсы два отдельных типа сигналов, но отличия между ними незначительны. Запускающий сигнал — это всего лишь очень узкий импульс. Разница в том, что триггер может быть как положительной, так и отрицательной полярности, тогда как импульс только положительным.

Форма импульса, или серии импульсов, как их чаще называют, является одним из видов несинусоидальной формы сигналов, похожей на прямоугольный сигнал. Разница в том, что импульсный сигнал определяется часто только коэффициентом заполнения. Для запускающего сигнала положительная часть сигнала очень короткая с резкими ростом и спадом и ее длительностью, по сравнению с периодом, можно пренебречь.

Очень короткие импульсы и запускающие сигналы предназначены для управления моментами времени, в которые происходят, например, запуск таймера, счетчика, переключение логических триггеров а также для управления тиристорами, симисторами и другими силовыми полупроводниковыми приборами.

Я рассмотрел здесь только основные виды электрических сигналов. Остальные типы сигналов, обычно, получают их комбинацией или модуляцией (изменением параметров, используя другой сигнал) , например:

  • Амплитудно-модулированный сигнал
  • Частотно-модулированный сигнал
  • Фазо-модулированный сигнал
  • Фазо-частотно-модулированный сигнал
  • Фазо-кодо-манипулированный сигнал

Подробно я вернусь к ним в своих последующих публикациях.

Источник

Оцените статью
Adblock
detector