Опыт короткого замыкания трансформатора с расщепленной обмоткой

Трансформатор с расщепленной обмоткой

Трансформаторы с расщепленной на две части обмоткой.

Для трансформаторов с расщепленной на две части обмоткой низшего напряжения применяется схема замещения в виде трехлучевой звезды (рисунок 1).

Для трансформаторов с расщепленной обмоткой вычисляется: Zвн — сопротивление между обмоткой высокого и объединенными обмотками низкого напряжения. Это сопротивление называется «сквозным» и вычисляется по паспортным данным трансформатора:

где: uквн — сквозное напряжение короткого замыкания трансформатора,

Uном — номинальное напряжение обмотки ВН трансформатора, кВ,

Sном — номинальная мощность трансформатора, МВА.

Вычисляется, кроме того, сопротивление расщепления Zн1-н2, равное сопротивлению между выводами двух ветвей расщепленной обмотки:

Для этого должно быть известно напряжение короткого замыкания между двумя обмотками НН трансформатора, uкн1-н2, %.

Сопротивление расщепления равно сопротивлению последовательно соединенных обмоток низшего напряжения:

И т.к. ветви низкого напряжения одинаковые, то Z для всех трех обмоток определяется по формулам:

Если значение uкн1-н2 не присутствует в паспортных данных трансформатора, расчет сопротивления проводится с помощью коэффициента расщепления, который определяется, как соотношение:

Коэффициент расщепления для однофазных трансформаторов равен 4. В трехфазных трансформаторах коэффициент расщепления зависит от расположения обмоток на стержне магнитопровода. При расположении расщепленных обмоток одна над другой коэффициент расщепления равен 3,5.

Если коэффициент расщепления известен, то предыдущие формулы принимают следующий вид:

Активные сопротивления обмоток приближенно вычисляются по формулам:

где: ΔPк — потери короткого замыкания на трансформаторе, кВт,

Uном — номинальное напряжение обмотки ВН трансформатора, кВ,

Sном — номинальная мощность трансформатора, МВА.

По найденным Z и R определяются X обмоток:

G и B вычисляются по таким же формулам, как и для двухобмоточного трансформатора:

Номинальный коэффициент трансформации определяется таким же образом, как для двухобмоточного трансформатора:

Источник

Двухобмоточный трансформатор с расщепленной обмоткой

Низкого напряжения

Двухобмоточные трансформаторы мощностью 25 и более МВ∙А выполняются с расщепленной обмоткой низшего напряжения. Условное обозначение на схемах показано на рис. 5.7.

В соответствии с принятой системой обозначений аббре-виатура трансформатора ТДРН-25000/110/10 расшифровывается: трансформатор трехфазный, двухобмоточный с расщепленной обмоткой низшего напряжения с принудительной цирку-ляцией воздуха и естественной циркуляцией масла и системой регулирования напряжения под нагрузкой. Номинальная мощность – 25000 кВ∙А, класс напряжения обмотки высшего напряжения – 110 кВ, низшего напряжения – 10 кВ.

Трансформаторы имеют трехлучевую схему замещения (рис. 5.8).

С достаточной для практики точностью такой трансформатор может рассматриваться как два независимых двухобмоточных трансформатора, которые питаются от общей сети.

Трансформаторы с расщепленной обмоткой выполняются с соотношением мощностей обмоток 100 % / 50 % / 50 %. Откуда следует, что

Опыт короткого замыкания выполняется при параллельном соединении обмоток низшего напряжения. По полученным данным определяются общие активное и индуктивное сопротивления трансформатора:

и

В соответствии с условиями выполнения опыта короткого замыкания

; (5.5)

(5.6)

Подставив выражение (5.3) в (5.5), получим:

Для определения индуктивных сопротивлений обмоток, нужно учитывать расположение обмоток на магнитопроводе, то есть влияние магнитных полей.

Читайте также:  Трансформатор микроволновой печи samsung de26 00099a

Так, для группы однофазных трансформаторов:

Для трехфазных трансформаторов при расположении обмоток одна над другой:

Проводимости трансформатора с расщепленной обмоткой определяются так же, как и для двухобмоточного трансформатора.

Применение трансформаторов с расщепленными обмотками для раздельного питания секций низшего напряжения позволяет снизить ток короткого замыкания практически в два раза и обойтись во многих случаях без токоограничивающих реакторов.

Автотрансформатор

На электрических схемах автотрансформатор изображается следующим образом (рис. 5.9).

В соответствии с принятой систе-мой обозначений аббревиатура авто-трансформатора АТДЦТН-125000/ 220/110/10 расшифровывается: автотрансформатор трехфазный, трехобмоточный с принудительной циркуля-цией воздуха и масла и системой регу-лирования напряжения под нагруз-кой. Номинальная мощность – 25000 кВ∙А, класс напряжения обмотки выс-шего напряжения – 220 кВ, среднего напряжения – 110 кВ, низшего напряжения – 10 кВ.

Автотрансформатор отличается от трехобмоточного трансформатора тем, что его обмотки высшего и среднего напряжений, кроме магнитной связи имеют еще электрическую связь (рис. 5.10). Обмотка среднего напряжения является частью обмотки высшего напряжения.

Обмотка высшего напря-жения состоит из двух частей – последовательной обмотки и общей обмотки.

При работе автотрансфор-матора в режиме понижения напряжения в последовательной обмотке протекает ток Iв. Он создает магнитный поток и наводит в общей обмотке ток Iобщ. Ток нагрузки в обмотке среднего напряжения равен сумме этих токов:

Ток Iв определяется электрической связью обмоток, а ток Iобщ – магнитной связью.

Полная мощность, которая передается из обмотки высшего напряжения в обмотку среднего напряжения, называется номинальной мощность автотрансформатора. Она рассчитывается как

Это выражение можно записать следующим образом:

Типовая мощность меньше номинальной мощности. Выясним во сколько раз. Для этого возьмем отношение типовой мощности к номинальной:

.

Коэффициент α называется коэффициентом выгодности. Выгодность автотрансформатора определяется по отношению к трехобмоточному трансформатору той же мощности.

Обмотка низшего напряжения имеет с обмотками высшего и среднего напряжений только магнитную связь. Мощность этой обмотки не может быть больше типовой мощности автотрансформатора. Иначе размеры магнитопровода автотрансформатора будут определяться мощностью обмотки низшего напряжения.

Учитывая изложенное, можно записать соотношение номинальных мощностей обмоток автотрансформатора:

Преимущества автотрансформатора по сравнению с трехобмоточным трансформатором:

· меньший расход материалов (меди, стали, изоляции);

· меньшие потери активной мощности в режимах холостого хода и короткого замыкания;

· больший коэффициент полезного действия;

· более легкие условия охлаждения.

· сложность выполнения независимого регулирования напряжения;

· опасность перехода атмосферных перенапряжений из обмотки высшего напряжения в обмотку среднего напряжения и обратно из-за электрической связи обмоток;

· необходимость обязательного глухого заземления нейтрали. Это приводит к тому, что ток однофазного короткого замыкания может быть больше тока трехфазного короткого замыкания. Если же разземлить нейтраль, то изоляцию обмоток нужно рассчитывать на линейное напряжение.

Автотрансформатор имеет такую же схему замещения, что и трехобмоточный трансформатор. Параметры схемы замещения рассчитываются аналогично. При этом следует учитывать, что часть паспортных данных может быть приведена не к номинальной мощности, а к типовой. Обмотка низшего напряжения рассчитывается на типовую мощность. Поэтому при коротком замыкании обмотки низшего напряжения напряжение поднимается до значения, определяющего ток в этой обмотке. В этом случае параметры ∆Рк вн, ∆Рк сн, Uк вн и Uк сн оказываются приведенными к типовой мощности автотрансформатора.

Читайте также:  Расчет сечения провода для импульсного трансформатора

Если в паспортных данных отмечается эта особенность, то указанные параметры следует привести к номинальной мощности по формулам:

и .

Знак “*” указывает, что параметры были приведены к типовой мощности автотрансформатора.

Источник

Силовые трансформаторы с расщепленной обмоткой низкого напряжения ТРДН

1. Общая характеристика

Трансформаторы с расщепленной обмоткой представляют из себя трансформаторы, с обмотокой разделенной на 2 или более не связанных между собой гальванически элементов.

Такие трансформаторы обычно устанавливают на крупных ПС районных электрических сетей и электростанциях, а так же систем электроснабжения промышленных предприятий. Это позволяет подсоединить два и более генераторов (или независимых нагрузок) одного или разных классов напряжений присоединять к одному трансформатору.

На рис.1.1 изображено обозначение трансформатора с расщепленной обмоткой на схеме.

Рисунок 1.1 – Обозначение на схеме

При коротком замыкании в цепи одной из частей расщепленной обмотки, в других обмотках трансформатора возникают напряжения и токи существенно меньшие, чем в таком же трансформаторе с нерасщепленной обмоткой низкого напряжения.Такой трансформатор, с достаточной для практики точностью, может рассматриваться как 2 независимых двухобмоточных трансформатора, питающихся от общей сети.

2. Причины установки ТРДН

Для ограничения токов КЗ, при номинальной мощности трансформатора 25 МВА и выше, а так же равномерной нагрузке на секции шин, широко применяются трансформаторы с расщепленной обмоткой низкого напряжения.

У трансформаторов с расщепленной обмоткой мощность каждой из обмоток низкого напряжения в 2 раза меньше номинальной мощности трансформатора. При этом, сопротивление каждой из обмоток низкого напряжения увеличивается в 2 раза по сравнению с двухобмоточным трансформатором такой же мощности без расщепления.
По сравнению с двухобмоточным трансформатором такой же мощности, сопротивление трансформатора сквозным токам КЗ при расщеплении обмотки увеличивается почти в 1,6 раза.

3. Расчет параметров

На рис.1.2 представлена схема замещения трансформатора с расщепленной обмоткой.

Рисунок 1.2 – Схема замещения трансформатора

Трансформаторы с расщепленной обмоткой выполняются с соотношением мощностей обмоток равным 100 % / 50 % / 50 % [1].
Для трансформаторов с расщепленной обмоткой индивидуальными параметрами являются:
– сопротивление расщепления ZР (равное сопротивлению между выводами двух ветвей расщепленной обмотки):

– сквозное сопротивление Zскв = ZВ-Н, равно сопротивлению между выводами обмотки высокого напряжения и объединенными (запараллелеными) ветвями расщепленной обмотки низшего напряжения;

– коэффициент расщепления КР, равен:

Параметры схемы замещения определяются по следующим формулам:

Для определения Z используем формулы:

R определяется по следующим формулам:

kТ Н-В определяем по формуле:

4. Основные характеристики трансформатора

На рис.1.3 изображен внешний вид трансформатора ТРДН-40000/110.

Рисунок 1.3 – Внешний вид трансформатора ТРДН-40000/110

В соответствии с принятой системой обозначений аббревиатура трансформатора ТРДН-40000/110-У1 расшифровывается так:
Т – трехфазный трансформатор;
Р – наличие ращепленной обмотки низкого напряжения;
Д – охлаждение производится с естественной циркуляцией масла и принудительной циркуляцией воздуха;
Н – регулирование напряжения производится под нагрузкой РПН;
40000 – номинальная мощность трансформатора, кВ•А;
110 – класс напряжения обмотки высокого напряжения, кВ;
У1 – климатическое исполнение, категория размещения по ГОСТу 15150.
Основные параметры этого трансформатора приведены в табл.1.1 [2].

Читайте также:  Как убрать шум трансформатора в усилителе

Таблица 1.1 – Технические параметры ТРДН-40000/110-У1

Номинальная частота, Гц 50
Схема и группа соединения обмоток Υн/Δ-Δ-11-11
Номинальное значение напряжения ВН, кВ 115
Номинальное значение напряжения НН, кВ 11
Напряжение КЗ (ВН-НН), % 10,5
Ток холостого хода, не более, % 0,55
Ступени регулирования РПН в нейтрали ВН ±9х1,78%
Полный срок службы, лет 25

В требованиях для силовых трансформаторов [3, 6.4] сказано, что для обеспечения продолжительной и надежной эксплуатации трансформаторов необходимо обеспечить:

  • соблюдение необходимых нагрузочных, температурных режимов и уровня напряжений;
  • соблюдение характеристик трансформаторного масла и изоляции в пределах установленных норм;
  • содержание в исправном состоянии устройств охлаждения трансформатора, защиты масла, регулирования напряжения и т. д.

5. Системы охлаждения и пожаротушения

Как уже говорилось выше, ТРДН имеют систему охлаждения с естественной циркуляцией масла и принудительной циркуляцией воздуха. Это значит, что в навесных охладителях из радиаторных труб помещают вентиляторы. В этом случае, в навесных охладителях, из радиаторных труб помещаются вентиляторы. Вентилятор засасывает воздух снизу трансформатора и обдувает нагретую верхнюю часть труб.

Для улучшения условий охлаждения масла, а следовательно, и обмоток магнитопровода трансформатора производится форсированный обдув радиаторных труб. Это позволяет изготовлять трансформаторы с расщепленной обмоткой мощностью до 100 000 кВ•А. В настоящее время, пуск и остановка вентиляторов, может осуществятся автоматически. Он зависит только от температуры нагрева масла и нагрузки [1].

6. Требования безопасности и охрана окружающей среды

Общие технические условия для силовых трансформаторов приведены в [4]. ГОСТ включает в себя технические требования, требования безопасности, включая требования пожарной безопасности, требования охраны окружающей среды, указания по эксплуатации, транспортирование и хранение. Требования безопасности, должны так же соответствовать [5, 6]. По стандарту [5] выполняется заземление баков трансформаторов.

Степень защиты трансформаторов определяет стандарт [6]. В нем говорится, что все трансформаторы, кроме встроенных, должны выполняться с 1 или 2 классом защиты и иметь степень защиты не ниже IP20. Стационарные трансформаторы, в свою очередь, допускается изготовлять со степенью защиты IP00. Система стандартов [4] приводит требования по утилизации трансформатора. В нем описан следующий ряд действий:

  • трансформаторное масло следует слить и отправить на регенерацию;
  • металлические составляющие трансформатора необходимо сдать на переработку;
  • фарфоровые изоляторы, электрокартон, резиновые уплотнения нужно отправить на полигон твердых бытовых отходов.

7. Ссылки и литература

1. Рожкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций. — М.: Энергоатомиздат, 1987. – 315 с.
2. Неклепаев Б.Н. Электрическая часть электростанций и подстанций. Учебник для вузов. 2-изд. — М.: Энергоатомиздат, 1986.-310 с.
3. Правила технической эксплуатации электроустановок. Утвержден приказом Минтопэнерго Украины от 25.07.2006 г.
4. ГОСТ Р 52719–2007. Трансформаторы силовые. Общие технические условия. – М.: Издательство стандартов, 2007. – 45 с.
5. ГОСТ 12.2.007.0–75. Система стандартов безопасности труда. Издание электротехническое. Общие требования безопасности. – М.: Издательство стандартов, 1975. – 12 с.
6. ГОСТ 12.2.007.2–75. Система стандартов безопасности труда. Трансформаторы силовые и реакторы электрические. Требования безопасности. – М.: Издательство стандартов, 1975. – 5 с.

Источник

Оцените статью
Adblock
detector