От чего зависит отклонение напряжения в сети

Допустимые отклонения напряжения в электрических сетях

Отклонением напряжения в электрической сети называется отличие текущего фактического его значения в установившемся рабочем состоянии от номинального для данной сети значения. Причина отклонения напряжения в какой-нибудь точке электросети кроется в изменении нагрузки на сеть в зависимости от графиков различных нагрузок.

Отклонение напряжения влияет на работу оборудования. Так, в технологических процессах снижение питающего напряжения ведет к увеличению продолжительности этих процессов, и в итоге растет себестоимость производства. А повышение напряжения сокращает жизнь оборудованию, ибо оборудование начинает работать с перегрузкой, что повышает вероятность аварий. Если напряжение отклонится от нормы значительно, то технологический процесс вообще может быть сорван.

На примере с системами освещения можно указать на тот факт, что с увеличением напряжения всего на 10%, время работы ламп накаливания уменьшается вчетверо, то есть лампа перегорает значительно раньше! А при снижении питающего напряжения на 10%, у лампы накаливания снизится на 40% световой поток, при этом у люминесцентных падение светового потока составит 15%. Если напряжение окажется 90% от номинала при включении люминесцентной лампы, то она замерцает, а при 80% — не запустится вовсе.

Асинхронные двигатели — весьма чувствительные к напряжению питания устройства. Так, если напряжение на обмотке статора упадет на 15%, то вращающий момент на валу снизится на четверть, и двигатель скорее всего остановится или, если речь идет о пуске, — асинхронный двигатель вовсе не запустится. При пониженном напряжении питания ток потребления возрастет, обмотки статора сильнее разогреются, и срок нормальной службы двигателя сильно сократится.

Если двигатель будет длительно работать при напряжении питания в 90% от номинала, то срок его службы уменьшится вдвое. Если же напряжение питания превысит номинал на 1%, то реактивная составляющая мощности, потребляемой двигателем, возрастет приблизительно на 5%, и общая эффективность работы такого мотора снизится.

В среднем электрические сети регулярно питают следующие нагрузки: 60% энергии приходится на асинхронные электродвигатели, 30% — на освещение и др, 10% — на специфические нагрузки, например на московское метро приходится 11%. По этой причине ГОСТ Р 54149-2010 регламентирует предельно допустимое значение установившегося отклонения на зажимах электроприемников как ± 10 % от номинала сети. При этом нормальным отклонением считается ± 5 %.

Есть два пути удовлетворения этих требований. Первый — снизить потери, второй — регулировать напряжение.

Оптимизация R – выбор сечения проводников ЛЭП в соответствии с регламентом по условиям минимально возможных потерь.

Оптимизация X – применение продольной компенсации реактивных сопротивлений линий, что сопряжено с опасностью повышенных токов КЗ, когда X→0.

Путь компенсации Q – применение установок КРМ с целью снижения реактивной составляющей при передаче по электросетям, при помощи непосредственно конденсаторных установок или с помощью работающих в перевозбуждении синхронных электродвигателей. Компенсируя реактивную мощность, помимо снижения потерь, получится добиться энергосбережения, поскольку в сетях снизятся общие электрические потери.

Пути регулирования напряжения

При помощи трансформаторов в центре питания регулируют напряжение Uцп. Специальные трансформаторы оборудованы автоматическими устройствами подстройки коэффициента трансформации соответственно текущей величине нагрузки. Регулирование возможно прямо под нагрузкой. 10% силовых трансформаторов оснащены такими устройствами. Диапазон регулирования составляет ± 16 %, при этом шаг регулирования составляет 1,78 %.

Читайте также:  Как выставить напряжение в биосе для оперативной памяти gigabyte

Так же регулировку напряжения могут реализовывать и трансформаторы промежуточных подстанций Uтп, обмотки разного коэффициента трансформации которых оснащены переключаемыми отпайками на них. Диапазон регулирования составляет ± 5 %, с шагом регулирования в 2,5 %. Переключение здесь производится без возбуждения, — с отсоединением от сети.

За постоянное удержание напряжения в регламентированных гостом (ГОСТ Р 54149-2010) пределах отвечает энергоснабжающая организация.

На самом деле, R и X можно выбрать еще на этапе проектирования электрической сети, и дальнейшее оперативное изменение этих параметров невозможно. Q и Uтп можно регулировать во время сезонных изменений нагрузок на сеть, но управлять режимами работы установок компенсации реактивной мощности необходимо централизованно, в соответствии с текущим режимом работы сети целиком, то есть это должна делать энергоснабжающая организация.

Что касается регулировки напряжения Uцп — непосредственно из центра питания, то это наиболее удобный для энергоснабжающей организации способ, позволяющий оперативно подстраивать напряжение точно по графику нагрузки сетей.

В договоре электроснабжения указываются пределы варьирования напряжения в месте присоединения потребителя; при расчете этих пределов необходимо опираться на падения напряжения между данной точкой и электроприемником. Как упоминалось выше, ГОСТ Р 54149-2010 регламентирует допустимые значения отклонений в установившемся режиме на зажимах электроприемника.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Что такое провалы напряжения в сети и как с ним бороться?

Обеспечение качества электроэнергии, отвечающего нормам ГОСТ 13109-97, является основной задачей при электроснабжении потребителей. Отклонения от номинальных значений, в частности, провалы напряжения, отрицательно отражаются на работе электрооборудования и могут стать причиной серьезного материального ущерба. В данной статье мы ответим на ключевые вопросы, связанные с кратковременным понижением напряжения, рассмотрим природу этого явления и причины его проявления.

Что такое провал напряжения?

В соответствии с определением, приведенным в ГОСТ 13109-97, под данным явлением подразумевается внезапное понижение амплитуды напряжения с последующим динамическим восстановлением питания в пределах номинального значения. Пример осцилограммы падения напряжения представлен ниже.

Осцилограмма провала напряжения

Характеризующие показатели

Для описания понижения амплитуды напряжения используются следующие показатели:

δUп – глубина провалов, для вычисления применяется следующая формула: δUп = (Uном — Uмин) / Uном , где Uном – номинальная величина амплитуды питающего напряжения, Uмин – значение остаточного напряжения;

∆t – длительность, данная величина определяется как разность между моментом восстановления напряжения к номинальному значению tк и временным параметром фиксации начальной стадии отклонения tн. Формула расчета длительности будет иметь следующий вид: ∆t = tк — tн

Fп – частотность повторений (частота возникновения провалов), приведем формулу, используемую для расчета этого параметра: Fп= 100% * m * (δUп* ∆tп) / M, где числитель дроби описывает количество отклонений, определенной глубины и длительности, произошедших в течение измеряемого периода. Знаменатель – общее количество отклонений, обнаруженных в ходе измерений.

Приведенные выше показатели используются для определения качества электроэнергии в той или иной системе электроснабжения.

Причины появления провалов

Несмотря на то, что проявления отклонения напряжения имеют случайный характер, вероятность этого события зависит от вполне определенных причин. К таковым относятся:

  1. Пусковые токи.
  2. Колебания напряжения при коротком замыкании.
  3. Внезапное значительное увеличение нагрузки.
  4. Другие причины сетевого происхождения.
Читайте также:  Psc10070d m установить регулятор напряжения

Рассмотрим подробно каждый из перечисленных факторов.

Токи включения

Образование токов включения, например, при старте мощных электродвигателей или другого устройства — самая распространенная причина подобных провалов. На рисунке ниже представлен пример, когда мощный двигатель подключен к единому вводу питания с другими потребителями.

Образование провала напряжения при запуске электродвигателя

Обозначения:

  • Т1 – Понижающий трансформатор.
  • RZ – Полное сопротивление на вводе питания.
  • RZ1-RZ3 — Полные сопротивления цепей потребителей.
  • М – мощный асинхронный двигатель.

С включением двигателя М образуется пусковой ток Iпуск, величина которого превышает номинальный по значению (Iпуск > Iном). Это приводит к образованию зоны провала c существенным понижением напряжения в цепи RZ1 и незначительным отклонениям на главном распределителе остальных цепей потребителей.

Короткие замыкания

Возникновение в электросети токов коротких замыканий также вызывают отклонения напряжения от нормы. Рассмотрим, как протекает и определяется процесс в сетях с различным классом напряжения.

КЗ в сетях с низким напряжением.

Пример такой ситуации проиллюстрирован на рисунке ниже. В данном случае на величину тока КЗ влияют полные сопротивления RZ и RZ2.

Образование провала вследствие КЗ в цепи потребителя 2

Исходя из этого, можно сказать, что чем больше будет величина полного сопротивления в сети низкого напряжения, тем меньшим будет значение тока КЗ.

На практике, в случае КЗ в цепи потребителя 2 должно произойти срабатывание защиты этой группы. Например, если отключение цепи произойдет через 50 мс, то на главном распределителе образуется зона провала длительностью 50 мс. То есть, данный параметр зависит от скорости срабатывания защиты. При этом глубина провала будет уменьшаться по мере удаления от поврежденного участка, соответственно, чем ближе нагрузка, тем большее отклонение. Эти правила работают как в сетях с низким, среднем и высоким напряжением.

КЗ в сетях с напряжением среднего класса.

Больше всего проблем возникает, когда КЗ происходит в трехфазных сетях среднего класса напряжения. Несмотря на случайный характер этого явления, вероятность возникновения аварийной ситуации довольно велика, поскольку нельзя исключать влияние сторонних факторов. К таковым можно отнести:

  • Различные виды земляных работ, в ходе которых может быть нанесено повреждение кабельной линии.
  • Пробои в местах соединений.
  • Старение изоляционного покрытия.
  • Воздействие природных и техногенных факторов.

При образовании тока КЗ он будет протекать, пока устройства автоматического защитного отключения на распределительной подстанции не изолирует аварийный участок. Пока этого не произойдет, в сети распределительной подстанции будет наблюдаться значительное снижение линейных напряжений.

КЗ в высоковольтных линиях.

В большинстве случаев замыкания в ВЛ происходят вследствие воздействия природных факторов (грозовые разряды, ураган и т.д.) или по причине ошибочных коммутаций и ложных срабатываний автоматической защиты.

Большие нагрузки

При подключении к электросети большой нагрузки, может привести к образованию пусковых токов, превышающих номинальные в несколько раз. В тех случаях, когда электроцепь рассчитана под номинальный ток, превышение этого параметра станет причиной снижения амплитуды источника питания. Масштабность данного проявления напрямую зависит от запаса мощности электрической сети и величины полного сопротивления.

Провалы сетевого происхождения

Учитывая сложность распределительных цепей, следует принять во внимание, что при повреждении одного из участков цепи будет оказываться влияние на остальные части. При этом на глубину и продолжительность провалов будет оказывать влияние следующие факторы:

  • топология цепи;
  • величина полного сопротивления проблемного участка;
  • текущая мощность нагрузки и источника электрической энергии (генератора).

Для более детального представления, рассмотрим пример, представленный на рисунке ниже.

Провалы сетевого происхождения

Допустим, произошло фазное замыкание в точке Р2, это приведет к тому, что у потребителя 1 отклонения напряжения наблюдаться не будут, у потребителя 2 глубина провала составит 63%, а у потребителя 3 – 97%.

Читайте также:  Bp2833a схема включения сколько напряжения выхода

Если однофазное замыкание возникнет в точке Р1, то глубина провала будет 50% от номинала у всех потребителей, за исключением потребителя 1. То есть, как мы видим, чем выше уровень топологии, где произошло повреждение, тем большее число потребителей попадает в зону провала напряжения. Соответственно, у потребителей, подключенных к уровню 3 риск появления провала значительно выше, чем у потребителей, запитанных от первого и второго уровня.

Допустимые провалы напряжения по ГОСТ

Согласно ГОСТ 32144 2013 для определения показателей качества электроэнергии провалы следует классифицировать по двум критериям:

  1. Величина остаточного напряжения.
  2. Длительность.

Поскольку появление провалов носит случайный характер, для представленных выше критериев не установлены численные значения. Тем не менее, измерения амплитуды и длительности должны проводиться с целью создания статистического массива, позволяющего установить вероятность случайного события для определенной электросети, с целью характеризовать КЭ.

Что касается «допустимых по ГОСТу провалов», то данное словосочетание не имеет смысла, поскольку под провалом подразумевается отклонение от установленной ГОСТом нормы (0,9Uном). Если быть точным, то можно назвать нормированием допустимую длительность провала (30 с), при превышении которого отклонение считается пониженным напряжением.

Влияние провалов на работу электрооборудования

Данное явление считается менее опасным отклонения частоты и импульсов напряжения, но, тем не менее, провалы могут привести к следующим последствиям:

  • Понижению интенсивности светового потока, производимого источниками с нитью накала.
  • Снижению чувствительности радио- и телеприемников.
  • Нестабильности работы рентгеновских установок.
  • Ложным срабатываниям электронных систем управления.
  • Понижение уровня постоянного тока в контактной сети электротранспорта негативно отражается на работе подвижного состава.
  • Изменению характеристик преобразователей напряжения.
  • Падение мощности электродвигателей, что приводит к электропотерям и износу.

Глубина провала более 10% от допустимого отклонения с большой вероятностью вызовет отключение газоразрядных источников освещения. При низком напряжении, более 15% от допустимой нормы, произойдет размыкание пускателей, что вызовет отключение электрооборудования и, как следствие, приведет к нарушению техпроцесса.

Характерно, что на дуговую электросварку провалы не оказывают серьезного влияния ввиду большой термической инерционности процесса, в то время как качество точечной сварки существенно снижается.

Финансовая сторона вопроса

Говоря о влиянии провалов на электрооборудование, мы упустили из виду финансовые потери, которые складываются из следующих составляющих:

  • Упущенная прибыль из-за простоя оборудования и потери времени на возобновление технологического цикла.
  • Ремонт вышедшего из строя оборудования.
  • Потери сырья и т.д.

Как бороться с провалами напряжения?

Как мы выяснили, провалы являются случайным явлением, длительность которого зависит от срабатывания защитных систем, а глубина – удаленностью от проблемного участка. Поскольку изменить вероятность проявления не представляется возможным, то остается только влияние на масштаб провала и устранение последствий.

Сделать это можно путем оптимизации сети, чтобы производилась компенсация провалов при резких изменениях нагрузки, а также установки специальных приборов для контроля фазных напряжений на соответствие номинальному уровню и исключению несимметрии. Не менее эффективно действует стабилизирующее оборудование, установленное у потребителя электроэнергии. Более серьезные приборы могут выступать в роли регулятора напряжения и преобразователя основной частоты.

Если проблема вызывается замыканиями, то установка системы АПВ, а при критических провалах и АВР, может сократить предельно допустимую длительность отклонения до короткого прерывания. То есть, автоматическая система произведет повторное включение и если это не даст результата, произойдет ввод резерва.

Советуем ознакомиться и прочитать:

Источник

Оцените статью
Adblock
detector