Отопление резонансным трансформатором громова

Конструкция, схемы и особенности работы трансформатора Седого Мишина для отопления

Трансформатор Седого Мишина для отопления является аналогом тороидальной катушки Тесла, запатентованной в конце 19-го века. Подобное оборудование нашло практическое применение в некоторых электродвигателях, радиоприемниках (антеннах), электрошокерах, для розжига газоразрядных ламп, определения течи в вакуумных системах, создания высоковольтных разрядов, используемых в индустрии развлечений. В сети интернет утверждают, что высокое напряжение, создаваемое в трансформаторе Седого Мишина (Тесла) можно использовать, чтобы устроить отопление.

Теоретически это возможно, на практике сложно из-за быстрого выхода из строя вторичной обмотки.

Конструкция тороидального резонансного трансформатора

Резонансный преобразователь в классическом исполнении не имеет сердечника, катушки тороидальные (простым языком – круглые, в виде бублика), состоит из 2-х обмоток и прерывателя (разрядчика). На первичной обмотке 3-10 витков, она выполнена из толстого медного провода. Вторая катушка высоковольтная, выполнена из тонкого провода, витков может быть от сотни до тысячи. Для функционирования в схему включаются конденсаторы, накапливающие заряд.

Первичная катушка бывает плоская, коническая, цилиндрическая, вертикальная, горизонтальная. Колебательный контур создается первичной обмоткой и конденсатором, разрядчик – это 2 электрода, размещенные на определенном расстоянии друг от друга. Второй контур образует вторичная катушка и тороид (замещает конденсатор). В процессе создания контуров важно добиться резонанса частот колебания – без него ток не повышается.

Если создавать резонансный преобразователь с применением сердечника, то необходимо соблюдать определенные требования. Магнитопровод не должен быть цельный, на каждой заизолированной части тора (круга) размещается отдельная обмотка, обмотки разделяются заземленным экраном.

Самая простая схема выглядит так (у трансформатора Мишина очень похожая):

Первичная обмотка трансформатора Седого из толстого провода или трубки подключается к конденсатору и разрядчику (электродам, оснащенным системой охлаждения). На вторичной катушке, покрытой эпоксидкой или лаком, тонкий провод, количество витков зависит от сечения. На выходе острый штырь, сфера или диск (форма зависит от типа разряда).

При изготовлении трансформатора Мишина своими руками необходимо учесть, что очень важно качество вторичной обмотки. Отношение между длиной и диаметром 4/1, провод должен быть намотан плотно, без скрещиваний.

Сопротивление первичной катушки должно быть минимальным, заземление экрана обязательно.

Принцип работы резонансного трансформатора

В любом трансформаторе при подаче переменного напряжения на первичную катушку создается магнитное поле, которое передается вторичной обмотке. На ней магнитное поле превращается в напряжение (пониженное или повышенное по сравнению с показателем на входе). Результат зависит от уровня резонанса между обмотками, качества связи между катушками, прочности вторичной обмотки.

После подключения к сети первичная катушка генерирует колебания высокой частоты, конденсатор накапливает напряжение до уровня пробоя. Пробой – это короткое замыкание, напряжение может достигать сотен киловатт. Это реактивное напряжение, которое создается в любом преобразователе и чаще всего не используется. Эффект увеличивается за счет отсутствия минимальной взаимоиндукции, обеспеченной отсутствием сердечника.

При наличии резонанса между катушками коэффициент трансформации может в несколько десятков раз превышать значение отношения количества витков вторичной катушки к количеству витков первичной. Самое простое применение – создание разряда в воздухе, что и используется в индустрии развлечений. Эффект увеличивается внесением в область разряда красителей, меняющих цвет.

Если напряжение на входе достаточно высокое, длина такой «молнии» составляет десятки метров.

Как использовать резонансный трансформатор в системе отопления

Резонансный трансформатор Мишина способен увеличить мощность в 10 раз. По сути, эта реактивная мощность, созданная стоячими электромагнитными волнами, которую можно снять на какое-то оборудование.

Если использовать несколько таких преобразователей, мощность увеличивается в сотни раз. Теоретически это можно использовать, в том числе в системе отопления, чтобы сэкономить электроэнергию.

Максимальный эффект от резонанса возможно получить, если увеличить добротность (отношение тока в реактивном компоненте к току в активном компоненте) второго контура в 30-200 раз. Через реактивную емкость и индуктивность при этом будет протекать реактивный ток, многократно превышающий ток на входе. Обычно он остается в контуре из-за противофазности. То есть, фазы компенсируют друг друга, но создают магнитное поле. Этот эффект уже используется в электрических двигателях, эффективность в которых зависит от степени резонанса.

Нельзя резонансный контур построить из материалов, которые просто попались под руку, его нужно осознано строить. Только тогда из сети будет забираться несколько ватт, а реактивная энергия будет большая. Ее можно перенести на односторонний трансформатор или отопительный котел.

Например, имеем домашнюю сеть 220 вольт, 50 Гц. Задача: получить на индуктивности в резонансном контуре ток величиной в 70 Ампер.

По закону Ома, мощность цепи индуктивности при переменном токе в преобразователя Седого должна быть:

I = U /R, где R – сопротивление намотки.

L – индуктивность намотки (измеряется в Генри);

f – частота (в бытовой сети 50 Гц).

I = U / 2πfL, а индуктивность:

L = U / 2πfI = 220 вольт / 2*3,14 * 50*70 = 0,010 H (Генри).

То есть, чтобы получить 70 А, индуктивность должна быть 0,010 H.

Емкость конденсатора (закон Томсона):

f = 1 / (2π*√ (L*C)) = 1 / (4*(3,14*3,14) * 0,01 H * (50 Гц*50 Гц)) = 0,001014 F (1,014mF)

Потребление от сети 220 В будет 6,27 Вт.

Мишин использовал для создания вторичной намотки бифиляр статора из электродвигателя. Для удобства вырезал выступы, витки не считал, наматывал сразу 2 провода с сечением 1 мм до полного заполнения бифиляра, для ограничения мощности сети использовал лампу накаливания, на входе напряжение 70 В. Первичная намотка – один виток медной трубки.

Достоверных и точных данных о том, как такое самодельное устройство использовать для отопления, на самом деле нет. Хотя общеизвестно, что по такому принципу работают вихревые индукционные нагреватели.

Стоит ли делать такой трансформатор самостоятельно

Трансформатор Седого Мишина, по сути, является так называемым генератором свободной энергии. Сделать его своими руками можно.

Стоит ли делать такое у себя дома, каждый решает сам. В интернете есть видео, на котором видно, как подобное устройство нагревает воду в ведре. Некоторые утверждают, что используют для создания световых эффектов в домашних условиях.

Однако не стоит забывать, что резонансный преобразователь отрицательно воздействует на организм человека, в частности на нервную систему, сердце и глаза. При разряде нельзя исключить вероятность ожогов. Женщинам и детям не желательно находится поблизости от подобного устройства из-за сниженной сопротивляемости организма. Поэкспериментировать можно, если есть желание и свободное время, но в отдаленности от членов семьи.

Источник

В 2014 Александр Андреев несколько изменил схему резонансного трансформатора, описанную Громовым Н.Н. в 2006 г., но энергия резонансного трансформатора по прежнему снижает расходы на электрическую энергию в 10 раз.

Это происходит от резонанса, получаемого во вторичной обмотке трансформатора. При потреблении от сети всего 200 Ватт на нагрузку мы можем отдавать до 5 кВт.

Я взял сердечник от французского инвертора 1978 года. Но искать надо сердечник с минимальным содержанием марганца и никеля, а кремний должен быть в пределах 3%. Тогда халявы много будет. Авто-резонанс получится. (Авто-резонанс впервые описан в 30-е годы советскими физиками А.А. Андроновым, А.А. Виттом и С.Э. Хайкиным. Это резонанс (колебания с наивысшей амплитудой), существующий за счет факторов, порождаемых им самим.) Трансформатор может самостоятельно заработать. Раньше были такие пластины Ш-образные на которых как-будто кристаллы нарисованы. А сейчас появились мягкие пластины, они не хрупкие, не ломаются. Вот такая старая хрупкая трансформаторная сталь для резонансного трансформатора самая оптимальная, современная не годится. Кремний резко повышает удельное электрическое сопротивление. В результате этого в электротехнической стали резко снижаются потери мощности от вихревых токов. Вместе с тем введение кремния снижает потери на гистерезис и увеличивает магнитную проницаемость в слабых и средних полях. (см Электротехническая сталь

http:// electrono.ru/ magnitnye-materialy/ elektrotexnicheskaya-stal)

Электрическая схема соединений представлена ниже.

Работа этого трансформатора связана с обычной электросетью. Пока я не собираюсь делать самозапитку, но это возможно сделать, надо вокруг него сделать такой же силовой трансформатор, один токовый трансформатор и один магнитный реактор. Все это обвязать и будет самозапитка.. Другой вариант самозапитки — это намотать 12 вольтную съемную вторичную катушку Тр2 на втором трансформаторе, далее использовать компьютерный ИБП, которого передать 220 Вольт уже на вход

Самое главное сейчас — это просто есть сеть, которая подается на схему, а я просто увеличиваю энергию за счет резонанса и питаю отопительный котел в доме. Это индуктивный котел, который называется ВИН. Мощность котла 5 кВт. Целый год этот котел проработал с моим умным трансформатором. За сеть я плачу как за 200 Вт.

Трансформатор может быть любым (на тороидном или П-образном сердечнике). Просто надо пластины трансформатора хорошо изолировать, покрасить, чтобы токов Фуко в нем было как можно меньше, т.е. чтоб сердечник при работе не грелся вообще.

Просто резонанс дает реактивную энергию, а переводя реактивную энергию в любой элемент потребления она становится активной. Счетчик до трансформатора при этом почти не крутится..

Для поиска резонанса я использую прибор ЕСН-15 еще советского исполнения. С ним я легко добиваюсь резонанса в любом трансформаторе.

Итак, за суровый зимний месяц я заплатил 450 рублей.

С первого трансформатора с тороидальным сердечником на 1 кВт я имею во вторичке 28 ампер и 150 вольт. Но нужна обратная связь через токовый трансформатор. Мотаем катушки: Сделать каркас. Когда первичную намотал по всему периметру в два слоя (проводом с диаметром 2,2 мм c учетом 0,9 витка на 1 вольт, т.е. на 220 Вольт в первичной обмотке получается 0,9 витков/В х 220 В = 200 витков), то магнитный экран положил (из меди или латуни), когда вторичную намотал (проводом с диаметром 3 мм с учетом 0,9 витка на 1 Вольт), то снова магнитный экран положил. На вторичной обмотке первого транса, начиная с середины, т.е. с 75 Вольт, я сделал множество выводов петлей (около 60-80 штук, кто сколько сможет, примерно 2 Вольта на вывод). На всей вторичной обмотке первого трансформатора нужно получить 150 — 170 Вольт. Для 1 кВт я выбрал емкость конденсатора 285 мкФ (тип используемых пусковых конденсаторов для эл. двигателя на рисунке ниже), т.е. два конденсатора. Если использовать 5 кВт трансформатор, то я буду использовать 3 таких конденсатора (неполярный для переменного тока 100 мкФ 450 Вольт). Проявление не полярности у такого конденсатора незначительное, чем меньше диаметр и короче баночка, тем лучше не полярность. Лучше выбирать более короткие конденсаторы, побольше количествоv, но меньшей емкости. При этом я нашел резонанс где-то на середине выводов вторичной обмотки. В идеале для резонанса замеряете индуктивное сопротивление и емкостное сопротивление контура, они должно быть равны, как по формуле. Вы по звуку услышите как трансформатор начнет сильно гудеть. Синусоида резонанса на осциллографе должна быть идеальной. Но я резонанс по слуху определяю, транс начинает сильно гудеть. Существуют разные частотные гармоники резонанса, но при 50 Гц трансформатор гудит в два раза громче, чем при 150 Гц. Из электротехнического инструмента я использовал токовые клещи, которые меряют частоту. Резонанс во «вторичке» вызывает резкое понижение тока в первичной обмотке, который составил 120-130 мА. Чтобы не было к вам претензий от сетевой компании, то параллельно первичной обмотке первого трансформатора устанавливаем конденсатор и доводим cos Ф = 1 (по токовым клещам). Напряжение я проверял уже на первичной обмотке Второго трансформатора. Это у первого трансформатора. Таким образом, в этом контуре (вторичная обмотка первого трансформатора — первичная обмотка второго трансформатора) у меня протекает ток 28 Ампер. 28А х 200В = 5,6 кВт. Эту энергию я снимаю с вторичной обмотки Второго трансформатора (провод сечением 2,2 мм) и передаю на нагрузку, т.е. в электро-котел. На 3 кВт диаметр провода вторичной обмотки второго трансформатора составляет 3 мм

Читайте также:  Отключение тока холостого хода трансформатора

Если хотите получить на нагрузке выходную мощность не 1,5 кВт, а 2 кВт, то сердечник первого и второго трансформатора (см габаритный расчет мощности сердечника) должны быть на 5 кВт

А у второго трансформатора, сердечник которого надо также перебрать, покрасить балонной краской каждую пластину, заусенцы убрать, тальком посыпать, чтобы пластины не прилипали друг к другу) надо сначала экран положить потом первичку намотать, потом на «первичку» второго трансформатора снова экран положить. Между «вторичкой» и «первичкой» все-равно должен быть магнитный экран. Если мы получили напряжение в резонансном контуре 220 или 300 Вольт, то «первичку» второго трансформатора нужно рассчитать и мотать также на эти же 220 или 300 вольт. Если по расчету 0,9 витка на вольт,то количество витков будет соответственно на 220 или 300 Вольт. Возле электро-котла (в моем случае это индукционный котел ВИМ 1,5 кВт) я ставлю конденсатор, ввожу этот контур потребления в резонанс, то смотрю по току или по COS Ф, чтобы COS Ф был равен 1. Тем самым мощность потребления уменьшается и контур, где у меня крутится мошность 5,6 кВт, разгружаю. Я катушки мотал как в обычом трансформаторе — одна над другой. Конденсатор 278 мкФ. Конденсаторы я беру стартерные или сдвигающие, чтобы они на переменном токе хорошо работали. Резонансный трансформатор от Александра Андреева дает прибавку 1 к 20

Первичную обмотку рассчитываем как обычный трансформатор. Когда собрали, то если ток там появится в пределах 1 — 2 Ампер, то лучше разобрать сердечник трансформатора, посмотреть где образуются токи Фуко и снова собрать сердечник (может где-то что-нибудь не до красили или заусенец торчит. Оставьте трансформатор на 1 час в рабочем состоянии, затем пощупайте пальцами там где нагрелось или пирометром замерили в каком углу греется) Первичную обмотку надо мотать, чтобы она потребляла 150 — 200 мА в холостую.

Цепь обратной связи от вторичной обмотки второго трансформатора к первичной обмотке первичного транформатора необходима для автоматичекой регулировки нагрузки, чтобы резонанс не срывался. Для этого в цепи нагрузки я разместил токовый трансформатор (первичка 20 витков, вторичка 60 витков и там несколько отводов сделал, далее через резистор, через диодный мост и на трансформаор в линию подающую напряжение к первому трансформаору (200 витков / на 60-70 витков)

Схема эта есть во всех древних учебниках по электротехнике. Она работает в плазматронах, в усилителях мощности, она в приемнике гама V работает. Температура обеих трансформаторов в работе около 80 С. Переменный резистор — это керамический резистор 120 Ом и 150 Вт, можно реостат школьный нихромовый с ползунком туда поставить. Он тоже нагревается до 60-80 С,поскольку ток через него проходит хороший =около 4 Ампер

Смета для изготовления Умного трансформатора для отопления дома или дачи

Трансформаторы Тр1 и Тр2 = по 5 000 рублей каждый причем Тр1 и Тр2 трансформатор можно купить в магазине. Он называется медицинский трансформатор. У него первичная обмотка уже заизолирована магнитным экраном от вторичной. http:// omdk.ru/ skachat_prays

Трансформатор тока Тр3 и подстроечный Тр4 = 500 рублей каждый

Диодный мост Д — 50 рублей

Подстроечный резистор R 150 Вт — 150 рублей

Конденсаторы C — 500 рублей

https:// www.youtube.com/ watch?v=GvaoaKj1xuE

https:// www.youtube.com /watch?v=snqgHaTaXVw

https:/ /www.youtube.com/ watch?v=Uu2Rbjr80RI Мастер-класс по резонансному трансформатору с Александром Андреевым (ч 2)

Цыкин Г.С. — Трансформаторы низкой частоты http:// www.sergey-osetrov.narod2.ru/ Resonant/ Transformer_with_low_frequency_M_1955.djvu

Еще одно описание схемы резонансного трансформатора Александра Андреева

На форуме http:// cyberenergy.ru/ resonance / generator-aleksandra-t998-40.html приведена схема, которая позволяет включать в нагрузку устройства большей мощности, чем мощность потребленная самим устройством.

Устройство работает на трансформаторах на резонансе, но без резких обрывов напряжения — без фронтов. Обмотка W1 является задающим звеном при перемагничивании сердечника. Эту обмотку надо мотать из расчета, чтобы при включении она потребляла 150мА в холостую (для 3х-киловаттного входного трансфоматора Т1). Обмотка W2 наматывается так, чтобы начиная с её середины, выводилось множество выводов — около 60-80 выводов — кто сколько сможет сделать, примерно 2 вольта на 1 вывод. Катушка должна соответствовать 150-160-180В. При настройке резонанса конденсатор С1 переключаем по выводам обмотки W2, Резонанс контура W2-C1 можно находить сразу после включения в сеть. При резонансе напряжение на W2 и С1 достигает 400В. Обмотку W3 надо мотать из расчёта 300В, потому что она будет понижать напряжение, чуть ли не до 220В, её лучше тоже делать с лишними выводами на случай проседания напряжения.

Трансформатор Т2 — это силовой, съемный трансформатор Контур W2-W3-C1 хорошо заэкранирован и обеспечивает хорошую развязку питания и потребления. Нижняя часть схемы — это обратная связь для того чтобы регулировать — сравнивать нагрузку со входом, чтобы резонанс не срывался. Конденсатором С2 регулируется косинус фи cosφ=1, чтобы претензий сетевой компании не было. Используемые детали Сердечники Для трансформаторов подходят как Ш-образные сердечники, так и тороидальные. В Ш-образных можно хорошо экранировать обмотки, а в тороидальных это сложно. Материал сердечника должен быть простой — железо. Высокочастотные материалы при 50 герцах неуместны. Чтобы добиться потребления 150мА в холостую, надо аккуратно собирать сердечник, снимать все заусенцы с пластин, подкрасить, если он старенький. Проверить тестером замыкают ли пластины. Чтобы не мучиться с этими пластинами, можно взять тачильный диск и поновой их задравить — снять все заусенцы и покрасить заново автомобильной краской из балончика, посыпать тальком, чтобы они не залипали друг к другу. Полезно использовать текстолитовые шайбы вместо металлических. Если сердечник будет плохой, он будет греться из-за токов Фуко, резонанс буде слабый и схема будет неэффективна

Трансформатор Т1 . Первичная обмотка W1 трансформатора Т1 мотается из расчета 0.9 витка на 1В для напрядения сети 220В, используется проволока диаметром 2.2мм. . Вторичная обмотка W2 сделана из проволоки диаметром 3мм тоже 0.9 витка на вольт. Где-то начиная с середины обмотки и до её конца, каждые 2 вольта надо делать выводы. . Сердечник. Надо аккуратно собирать сердечник, снимать все заусенцы с пластин, подкрасить, если он старенький. Проверить тестером замыкают ли пластины. Чтобы не мучиться с этими пластинами, можно взять тачильный диск и поновой их задравить — снять все заусенцы и покрасить заново автомобильной краской из балончика, посыпать тальком, чтобы они не залипали друг к другу. У трансформатора Т1 надо заэкранировать вторичную обмотку, а у Т2 — первичную.

У трансформатора Т1 надо заэкранировать вторичную обмотку, а у Т2 — первичную.

Обмотка W1 является задающим звеном при перемагничивании сердечника. Эту обмотку надо желательно домотать из расчета, чтобы при включении она потребляла 150мА в холостую (для 3х-киловаттного входного трансфоматора Т1). Чтобы добиться потребления 150мА в холостую, надо аккуратно собирать сердечник. В первом эксперименте автора, ему пришлось домотать 35 витков и коэффициент 0,9 витка/вольт изменился в большую сторону. При первоначальном количестве витков ток на холостом ходу был 400мА, а после домотки 35 витков — 150 мА. Соответственно, отнеситесь к остальным обмоткам схемы внимательно и проследите за ними с точки зрения своей логики.

Обмотка W2 наматывается так, чтобы начиная с её середины, выводилось множество выводов — около 60-80 выводов — кто сколько сможет сделать, примерно 2 вольта на 1 вывод. Катушка должна соответствовать 150-160-180В, при желании можно добавлять на всякий случай. При резонансе напряжение на W2 подскочит выше 220В, но это не значит, что W2 должна мотаться не на 180 Вольт, т.к. резонанс будет именно на этих витках, т.е. лишние витки не нужны.

Первичная обмотка W3. Первичная обмотка W3 сделана из проволоки диаметром 2.2мм тоже 0.9 витка на вольт. Обмотка W3 мотается из расчёта напряжения, которое реально присутсвует в резонансе. При резонансе фактическое напряжение на W2 превышает обычное и выходит не только за пределы 170В, но и за 220В. Если при настройке резонанса в замкнутом контуре W2-С1 будет 400В, то W3 надо мотать из расчёта 300В, потому что она будет понижать напряжение, чуть ли не до 220В, её лучше тоже делать с лишнеими выводами на случай проседания напряжения. Напоминание: W2 должна мотаться не на 180В, т.к. резонанс будет именно на этих витках, зато первичка W3 трансформатора Т2 должна мотаться для фактического напряжения при резонансе, т.е. в ней будет значительно больше витков, чем во вторичке W2.

Вторичную обмотку W4 трансформатора Т2 можно мотать когда схема из W1, W2 и W3 будет настроена. Тогда, намотав 10 витков, можно замерить напряжение и узнать сколько нужно витков, чтобы получить 220В. Для нагрузки 2кВт можно использовать провод диаметром 2.2мм.

Сердечник трансформатора Т2 надо обрабатывать также как трансформатора Т1, чтобы токи Фуко были минимальны. У трансформатора Т1 надо заэкранировать вторичную обмотку, а у Т2 — первичную.

Демонстрация трансформатора Т1/Т2 на 14м40с видео, размещенного в начале статьи.

Трансформатор Т2 имеет больше витков, чем трансформатор Т1.

Если необходимо снимать на выходе 2 кВт, то трансформатор Т1 и трансформатор Т2 должны быть мощностью по 5 кВт.

Трансформатор Т3 — это токовый трансформатор.

В первичной обмотке W5 примерно 20 витков

Во вторичной W6 примерно 60 витков и есть несколько отводов, чтобы не перегрузилась цепь с резистором и диодами.

В первичной обмотке W7 200 витков

Во вторичной W8 примерно 60-70 витков.

С каждой катушки трансформаторов Т3 и Т4 лучше сделать по 20 выводов для настройки.

Конденсаторы должны быть не полярным электролитом, а неполярными полимерными, а лучше их набором — это могут быть стартерные конденсаторы для переменного тока. Конденсаторы надо проверить что они не полярные — это можно сделать на осциллографе, это делается так: один провод от ноги конденсатора втыкают в осциллограф, а другой провод от другой ноги берут за руку и на осциллографе смотрят наводку переменного тока — какая амплитуды, затем концы конденсатора меняют местами и опять смотрят амплитуду. По разнице амплитуд оценивают полярность конденсатора. Должна получаться симметричность с отклонением не более 5%. Надо брать конденсаторы поменьше и покороче.

Можно взять конденсаторы по 1мкФ и соединить их в блоки в геометрической прогрессии (удвоение), например, 1мкФ, 2мкФ, 4мкФ, 8мкф, 16мкФ, 32мкФ, 64мкФ, 128мкФ. Тогда можно будет сделать систему из них и выключателей (хороших кнопочных выключателей), которая будет включать и отключать эти блоки и за счёт этого можно будет получить любое значение ёмкости с точностью до 1мкФ. Например, 185мкФ будет состоять из блоков 128+32+16+8+1. Имея такой магазин конденсаторов можно сэкономить на количестве выводов с обмотки W2, т.к. резонанс всё-таки можно будет подобрать. Причём резонанс будет лучше, если индуктивное сопротивление будет равно емкостному сопротивлению. Их можно вычислить по формуле или измерить и если они не равны, то надо их равнять. Конденсатор С1 для трансформатора на 3кВт составляет 285мкФ. Можно использовать конденсатор меньшей емкости, например 185 мкФ, но тогда напряжение на вторичке W2 придется увеличивать и мотать больше витков, а тогда примется мотать больше витков на первичке W3 трансформатора Т2.

Конденсатор С2 зависит от того сколько реактивной энергии выделяется назад (примерно 40-50мкФ). Он нужен, чтобы сделать косинус напряжения на W1 и С2 и тока I1 равным единице. Косинус замеряется специальными клещами, которые надеваются вокруг провода с током I1 и подсоединяются клеммами к W1.

Конденсаторы С2 и С3 снимают гармоники.

Резистор R1 120 Ом, 150Вт — керамический резистор. Можно поставить проволочный нихромовый переменный резистор. Ток до 4А, нагревается до 60-80 градусов.

В качестве нагрузки используется индукционный отопительный котёл Вин на 1.5кВт.

Читайте также:  Трансформатор тмг 1000 сколько масла

Используются обычные медные лакированные провода (с лакокрасочной изоляцией). В случае тороидального трансформатора Т1 Сначала мотается первичка, затем фольга, вторичка и опять фольга. Причем, вторичка наматывается не на 360 градусов тора, а оставляется промежуток, чтобы в этом месте фольгу разных слоёв можно было сблизить между собой (контакта не происходит — используется изоляция). Если витки не умещаются в один слой, то надо пропускать этот свободный сектор и продолжать мотать второй слой за ним.

Настройка первого трансформатора, настройка временного контура W2-C1 Первоначально настройку резонанса на трансформаторе Т1 выполням по схеме:

конденсатор переключаем по выводам обмотки W2, при этом при токе I12 28-30А при резонансе будет резкое понижение тока I11 и он останется в пределах 120-130мА. Т.е. Подключать нагрузку не нужно, должен оставаться чистый LC-контур. Когда будет резонанс, трансформатор начнёт нехорошо гудеть. Добавляя емкости по 1 мкФ в С1, напряжение на катушке W3 будет расти, но если после этого оно начнет падать с добавлением кондесаторов в С1, то это значит, что мы перешли резонанс — надо снова убирать ёмкости.

Затем подключаем трансформатор Т2 — это силовой, съемный трансформатор. Возможно у вас ещё не намотана вторичная обмотка W4 транстформатора Т2. Резонанс можно находить сразу после включения в сеть. Пока нет нагрузки резонанс нормально держится продолжительное время. После разогрева трансформатора (через 20-30 минут) можно еще раз произвести настройку, побегав конденсатором C1 по выводам катушки W2. При резонансе напряжение на W2 и С1 достигает 400В. Продолжение по настройке резонанса продолжено ниже в описании конденсатора С1.

Имея магазин конденсаторов, описанный выше (1+2+4+. ), можно сэкономить на количестве выводов с обмотки W2, т.к. резонанс всё-таки можно будет подобрать. Причём резонанс будет лучше, если индуктивное сопротивление будет равно емкостному сопротивлению. Их можно вычислить по формуле или измерить и если они не равны, то надо их равнять. Если резонанс будет не хороший, то на выходе W2 будет синусоида хуже, чем на входе W1, а она (на W2) должна быть идеальной. Это можно сделать на слух. Чем лучше гудит трансформатор — тем лучше резонанс. При резонансе трансформатор должен гудеть громче всего и гул должен быть на частоте 50Гц, т.е. самый низкочастотный. Если резонанс будет на частоте 150 Гц, а не 50Гц, то ток I1 — потребления из сети (к катушке W1) будет выше. При самом правильном резонансе ток I1 минимален. После того как найден резонанс на выводах катушки W2, можно подстраивать ёмкость С1.

Режим работы под нагрузкой

Катушка W2 отсоединена от магнитной связи с W1 за счет того, что она находится в экране. Также катушка W3 отсоединена от W4, за счёт этого контур W2-W3-C1 начинает хорошо работать — разгружается и таким образом тоже. Тогда этот контур хорошо держит резонанс — не срывается. Резонанс трансформатора Т1 проверятся после включения так: если обмотра W1 греется больше чем сердечник, то всё парвильно — резонанс есть, а если сердечник греется больше обмотки, то трансформатор собрали неправильно. Место в сердечнике, которое начинает разогреваться сильнее легко найти, если есть пирометр — это может быть зона болтов или др там и ошибка в сборке.

В контуре W2-W3-C1 вращается ток 28А. На обмотке W4 измерения показыват напряжение 220В.

При резонансе 3кВт-сердечник трансформатора Т1 нагревается до 80-90 градусов. Трансформатор Т2 тоже греется в пределах 80 градусов Если мощность контура W2-W3-C1 — 5кВт, то на выходе L1 можно снять мощность только 1.5-2кВт, потому что контур начинает срываться из-за нагрева сердечника. Т.е. если необходимо снимать на выходе 2 кВт, то трансформатор Т1 и трансформатор Т2 должны быть мощностью по 5 кВт.

W1 — 210-230В — то что поступает из электросети.

W2 — в резонансе короткого контура 400В.

W4 завышено — 240-250В, чтобы отопитель лучше грел.

Настройка конденсатора С3

На выходе в качестве потребления использован индукционный нагреватель на 1.5кВт — L1. Добавляя ёмкость С3 вводим в резонанс в минимуме тока W4-L1 или косинус фи должен быть 1 (если настраивать по косинусу, то токовые клещи подключаются на выводы L1, а сами надеваются на проводник W4-L1) — тогда мощность потребления уменьшается и контур W2-W3-C1 разгружается.

Настройка Конденсатора С2

Конденсатором С2 регулируется косинус фи cosφ=1, чтобы претензий сетевой компании не было. Конденсатор С2 зависит от того сколько реактивной энергии выделяется назад (примерно 40-50мкФ). Он нужен, чтобы сделать косинус напряжения на W1 и С2 и тока I1 равным единице. Косинус замеряется специальными клещами, которые надеваются вокруг провода с током I1 и подсоединяются клеммами к W1. Умный упрощенный трансформатор Андреева на Ш-образном сердечнике или как сделать генератор электроэнергии из дросселя

Это принцип дросселя и трансформатора в одном лице, но он настолько простой, что никто еще не догадался его использовать. Если взять Ш-образный сердечник 3х фазного трансформатора, то Функциональная схема генератора получения дополнительной энергии будет как на рисунке ниже

В этом генераторе электроэнергии совмещен принцип дросселя и трансформатора в одном лице, но он настолько простой, что еще никто не догадался его применить. Чтобы получить больший реактивный ток в резонансном контуре, ты должен трансформатор превратить в дроссель, то есть разорвать сердечник трансформатора полностью.

Всего-навсего нужно первой намотать не входную, как обычно мотают, а выходную обмотку, т.е. ту где забирается энергия.

Вторую мотаем резонансную. При этом диаметр провода должен быть в 3 раза толще, чем силовая

В третий слой мотаем входную обмотку, т.е сетевую.

Это условие для того, чтобы резонанс между обмотками гулял.

А чтобы не было тока в первичной обмотке, то трансформатор превращаем в дроссель. Т.е. Ш-образки с одной стороны собираем, а ламельки (пластиночки) с другой стороны собираем. И там выставляем зазор. Зазор должен быть по мощности трансформатора. Если 1 кВт, то ему 5 А в первичной обмотке. Делаем зазор так, чтобы в первичной обмотке было 5А холостого хода без нагрузки. Этого нужно добиться зазором. Потом, когда делаем резонанс ток падает до «0» и тогда уже будешь постепенно нагрузку подключать, подключать и смотреть разницу входа мощности и выхода мощности и тогда халява получится. Я 1-фазным 30кВт-ым трансформатором добился соотношения 1:6 (в пересчете на мощность 5А — на входе и 30А — на выходе)

Только надо постепенно набирать мощность, чтобы не перепрыгнуть барьер халавщины. Т.е. как и в первом случае (с двумя трансформаторами) резонанс существует до определенной мощности нагрузки (меньше можно, но больше нельзя) Этот барьер нужно подбирать вручную. Можно подключать любую нагрузку (активную, индуктивную, насос, пылесос, телевизор, компьютер. ) По нагрузке надо так согласовать, чтобы не было перебора этой мощности. Когда перебор мощности будет, тогда резонанс уходит, тогда резонанс перестает работать в режиме накачки энергии.

Я взял Ш-образный сердечник от французского инвертора 1978 года. Но искать надо сердечник с минимальным содержанием марганца и никеля, а кремний должен быть в пределах 3%. Тогда халявы много будет. Авторезонанс получится. Трансформатор может самостоятельно заработать. Раньше были такие пластины Ш-образные на которых как-будто кристаллы нарисованы. А сейчас появились мягкие пластины, они не хрупкие, в отличие от старого железа, а мягкие и не ломаются. Вот такое старое железо для трансформатора самое оптимальное.

Если делать на торе, то тор нужно в двух местах распиливать, чтобы потом стяжку сделать. Шлифовать распиленный зазор нужно очень хорошо

На Ш-образном 30кВт-ном трансформаторе у меня получился зазор 6 мм, если 1 кВт-ный — то зазор будет где-то 0,8-1,2 мм. В качестве прокладки картон не подойдет. Магнитострикция его раздолбает. Лучше брать стеклотекстолит

Первой мотается обмотка, которая идет на нагрузку, она и все остальные мотаются на центральном стержне Ш-образного трансформатора. Все обмотки мотаются в одну сторону

Подбор конденсаторов для резонансной обмотки лучше делать магазином конденсаторов. Ничего там сложного нет. Нужно добиться того, чтобы железо начало хорошо рычать, т.е возник ферро-резонанас. Не индукционный эффект между емкость и катушкой, а чтобы железо между ними работало хорошо. Железо должно работать и накачивать энергию, сам по себе резонанс не качает, а железо является стратегическим устройством в этом устройстве.

В моей резонансной обмотке было 400 Вольт. Но чем больше — тем лучше. По поводу резонанса — нужно соблюдение реактивных сопротивлений между индуктивностью и емкостью, чтобы они были равны. Это та точка, где и когда возникает резонанс. Можно еще сопротивление добавить последовательно.

Из сети идет 50 Гц, которые возбуждают резонанс. Происходит увеличение реактивной мощности, далее с помощью зазора на обкладке в съемной катушке мы превращаем реактивную мощность в активную.

В этом случае я просто собирался упростить схему и перейти от 2х трансформаторной или 3х трансформаторной, схемы с обратной связью и дроссельной связью. Вот упростил до такого варианта, который еще и работает. 30 кВт-ный работает, но нагрузку я могу снимать только 20 кВт, т.к. все остальное — для накачки. Если я буду больше энергии забирать из сети, то он и отдавать будет больше, но уменьшаться будет халява.

Следует назвать еще одно неприятное явление, связанное с дросселями, — все дроссели при работе на частоте 50 Гц создают гудящий звук той или иной интенсивности. По уровню производимого шума дроссели делятся на четыре класса: с нормальным, пониженным, очень низким и особо низким уровнем шума (в соответствии с ГОСТ 19680 они маркируются буквами Н, П, С и А).

Шум от сердечника создается магнитострикцией (изменением формы) пластин сердечника, когда магнитное поле проходит через них. Этот шум также известен, как холостой шум, так как он не зависит от нагрузки, подаваемой на дроссель или трансформатор. Шум нагрузки возникает только у трансформаторов, к которым подключается в нагрузка, и он добавляется к холостому шуму (шуму сердечника). Этот шум вызывается электромагнитными силами, связанными с рассеиванием магнитного поля. Источником данного шума являются стенки корпуса, магнитные экраны, и вибрация обмоток. Шумы, вызываемые сердечником и обмотками, находятся, в основном, в полосе частот 100-600 Hz.

Магнитострикция имеет частоту вдвое выше частоты подаваемой нагрузки: при частоте 50 Hz, пластины сердечника вибрируют с частотой 100 раз в секунду. Более того, чем выше плотность магнитного потока, тем выше частота нечетных гармоник. Когда резонансная частота сердечника или корпуса совпадает с частотой возбуждения, то уровень шума увеличивается еще больше

Известно, что если через катушку протекает большой ток, то материал сердечника насыщается. Насыщение сердечника дросселя может привести к увеличению потерь в материале сердечника. При насыщении сердечника его магнитная проницаемость уменьшается, что приводит к уменьшению индуктивности катушки.

В нашем случае сердечник катушки индуктивности выполнен с воздушным диэлектрическим зазором на пути магнитного потока. Сердечник с воздушным зазором позволяет:

Исключить насыщение сердечника, уменьшить в сердечнике потери мощности, увеличить ток в катушке и т.д.

Выбор дросселя и Характеристики сердечника. Магнитные материалы сердечника состоят из очень маленьких магнитных доменов (размерами порядка нескольких молекул). Когда внешнее магнитное поле отсутствует, эти домены ориентированы случайным образом. При появлении внешнего поля домены стремятся выравняться по его силовым линиям. При этом происходит поглощение части энергии поля. Чем сильнее внешнее поле, тем больше доменов полностью выравниваются по нему. Когда все домены окажутся ориентированы по силовым линиям поля, дальнейшее увеличение магнитной индукции не будет влиять на характеристики материала, т. е. будет достигнуто насыщение. По мере того как напряжённость внешнего магнитного поля начинает снижаться, домены стремятся вернуться в первоначальное (хаотичное) положение. Однако некоторые домены сохраняют упорядоченность, а часть поглощённой энергии, вместо того чтобы вернуться во внешнее поле, преобразуется в тепло. Это свойство называется гистерезисом. Потери на гистерезис являются магнитным эквивалентом диэлектрических потерь. Оба вида потерь происходят из-за взаимодействия электронов материала с внешним полем. http:// issh.ru/ content/ impulsnye-istochniki-pitanija/ vybor-drosselja/ kharakteristiki-serdechnika/ 217/

Читайте также:  Сколько кубов бетона прогреет трансформатор тмо 80

Аналитический расчет воздушного зазора в дросселе не очень точен, т.к. данные производителей о стальных магнитных сердечниках неточны (обычно погрешность составляет +/- 10%). Программа схемотехнического моделирования Micro-cap позволяет довольно точно рассчитать все параметры катушек индуктивности и магнитные параметры сердечника http://www.kit-e.ru/ articles/ powerel/ 2009_05_82.php

Влияние воздушного зазора на добротность Q дросселя со стальным сердечником. Если частота напряжения, приложенного к дросселю, не изменяется и с введением воздушного зазора в сердечник амплитуда напряжения увеличивается так, что магнитная индукция поддерживается неизменной, то и потери в сердечнике будут сохраняться такими же. Введение воздушного зазора в сердечник вызывает увеличение магнитного сопротивления сердечника обратнопропорционально m∆ (см формулу 14-8) Следовательно для получения той же магнитной индукции намагничивания ток должен соответственно увеличиваться. Добротность Q дросселя можно определять по уравнению

Для получения наибольшей величины добротности в сердечник дросселя обычно вводят воздушный зазор, увеличивая тем самым ток Im настолько, чтобы выполнялось равенство 14-12. Так как введение воздушного зазора уменьшает индуктивность дросселя, то высокое значение Q достигается обычно за счет снижения индуктивности.

http:// edu.sernam.ru/ book_dpt.php?id=3

Изобретение относится к электротехнике и предназначено, в частности, для преобразования одной системы переменного тока в другую. Технический результат состоит в уменьшении воздействия вторичной обмотки на первичную. Резонансный трансформатор содержит магнитопровод (1), первичную обмотку (2), вторичную обмотку (3) и конденсатор (4). Магнитопровод (1) имеет удлиненные стержни и ярма. Вторичная обмотка (3) симметрично удалена от магнитопровода (1) и вместе с первичной (2) расположена вокруг одного стержня. Первичная цепь трансформатора введена в режим резонанса токов путем параллельного соединения конденсатора (4) и первичной обмотки (2). 4 ил.

Рисунки к патенту РФ 2418333

Изобретение относится к области электротехники и предназначено, в частности, для преобразования одной системы переменного тока в другую при отсутствии воздействия вторичной обмотки на первичную.

Заявителю известен ближайший прототип заявленного изобретения как наиболее близкий ему по совокупности существенных признаков. Данный прототип представляет собой силовой трансформатор, содержащий магнитопровод, выполненный из электротехнической стали, первичную и вторичную обмотки, расположенные на стержнях, причем первичная обмотка подключена к источнику переменного напряжения, а вторичная обмотка к нагрузке (Кацман М.М. Электрические машины. — М.: Высш. школа, 1983 г., с.13).

Недостатком этого трансформатора является воздействие вторичной обмотки на магнитопровод трансформатора посредством ее магнитного поля и как следствие, воздействие на физические процессы, протекающие в цепи первичной обмотки, что влияет на режим работы источника питания в зависимости от нагрузки в цепи вторичной обмотки трансформатора.

Задачей, на решение которой направлено изобретение, является устранение воздействия вторичной обмотки на магнитопровод трансформатора посредством ее магнитного поля.

Упомянутая задача достигается тем, что резонансный трансформатор содержит магнитопровод 1, первичную обмотку 2, вторичную обмотку 3 и конденсатор 4, магнитопровод 1 имеет удлиненные стержни и ярма, а вторичная обмотка 3 симметрично удалена от магнитопровода 1 и вместе с первичной 2 расположена вокруг одного стержня, причем первичная цепь трансформатора введена в режим резонанса токов путем параллельного соединения конденсатора 4 и первичной обмотки 2.

Техническим результатом изобретения является отсутствие воздействия вторичной цепи трансформатора на его первичную цепь посредством магнитного поля вторичной обмотки.

Получение технического результата изобретения возможно только за счет симметричного удаления вторичной обмотки трансформатора от его магнитопровода и увеличения намагничивающей силы первичной обмотки, используя увеличенную реактивную мощность в режиме резонанса токов, полученного параллельным соединением первичной обмотки трансформатора и конденсатора.

На фиг.1 представлена конструкция резонансного трансформатора в разрезе;

на фиг.2 представлена принципиальная электрическая схема соединений первичной и вторичной цепей резонансного трансформатора;

на фиг.3 представлена векторная диаграмма, поясняющая протекание физических процессов первичной цепи резонансного трансформатора;

на фиг.4 представлена векторная диаграмма, поясняющая работу резонансного трансформатора.

Резонансный трансформатор, изображенный на фиг.1, содержит магнитопровод 1, первичную обмотку 2 и вторичную обмотку 3, магнитопровод 1 имеет удлиненные стержни и ярма, а вторичная обмотка симметрично удалена от магнитопровода и вместе с первичной расположена вокруг одного стержня.

Принципиальная электрическая схема соединений первичной и вторичной цепей резонансного трансформатора, изображенная на фиг.2, содержит конденсатор 4, резонансный трансформатор 5, нагрузку 6 и работает следующим образом. Вторичная обмотка резонансного трансформатора 5 (фиг.2) симметрично удалена от магнитопровода на такое расстояние, чтобы при протекании по ней номинального тока нагрузки ЭДС первичной обмотки равнялась нулю. Вторичная обмотка должна быть удалена не менее чем на величину магнитной индукции в центре нее согласно формуле:

где D — диаметр каркаса вторичной обмотки (м);

µ — магнитная проницаемость (Гн / м);

I 2 — сила тока в цепи вторичной обмотки (А);

N 2 — количество витков вторичной обмотки;

f- частота тока вторичной обмотки (Гц);

Благодаря отсутствию воздействия удаленной вторичной обмотки на магнитопровод резонансного трансформатора первичная обмотка последнего становится катушкой индуктивности с сердечником и является одним элементом колебательного контура, вторым элементом которого является конденсатор 4. Реактивное сопротивление индуктивного характера первичной обмотки резонансного трансформатора равно реактивному сопротивлению емкостного характера конденсатора 4 при неизменной частоте подводимого напряжения U 1 . Таким образом цепь первичной обмотки резонансного трансформатора находится в режиме резонанса токов. Благодаря эффекту увеличения реактивной мощности в режиме резонанса энергия магнитного поля первичной обмотки возрастает до величины, необходимой для индуцирования нужной ЭДС во вторичной обмотке для питания нагрузки 6. В результате резонансный трансформатор работает нормально, питая нагрузку 6, при этом физические процессы, протекающие в цепи первичной обмотки, не зависят от физических процессов, протекающих в цепи вторичной обмотки.

Как видно из векторной диаграммы (фиг.3), сила тока конденсатора I c во много раз превышает силу тока источника питания I и равна силе тока первичной обмотки резонансного трансформатора I 1 .

Как видно из векторной диаграммы резонансного трансформатора (фиг.4), ток первичной обмотки I 1 не зависит от тока нагрузки 1 н и первичная обмотка имеет индуктивный характер, несмотря на активный характер нагрузки 6, где:

Ф — магнитный поток резонансного трансформатора (Вб);

I 1 — сила тока первичной обмотки резонансного трансформатора (А);

E 1 — ЭДС первичной обмотки (В);

Е 2 — ЭДС вторичной обмотки (В);

U н — напряжение на нагрузке (В);

I н — сила тока в цепи нагрузки (А);

I 2X2 — падение напряжения на индуктивном сопротивлении вторичной обмотки (В);

I 2r2 — падение напряжения на активном сопротивлении вторичной обмотки (В);

I 2z2 — падение напряжения на полном сопротивлении вторичной обмотки (В);

I 1X1 — падение напряжения на полном сопротивлении первичной обмотки (В);

I 1r1 — падение напряжения на активном сопротивлении первичной обмотки (В);

I 1Z1 — падение напряжения на полном сопротивлении первичной обмотки (В);

ФОРМУЛА ИЗОБРЕТЕНИЯ

Резонансный трансформатор, содержащий магнитопровод (1), первичную обмотку (2), вторичную обмотку (3) и конденсатор (4), отличающийся тем, что магнитопровод (1) имеет удлиненные стержни и ярма, а вторичная обмотка (3) симметрично удалена от магнитопровода (1) и вместе с первичной (2) расположена вокруг одного стержня, причем первичная цепь трансформатора введена в режим резонанса токов путем параллельного соединения конденсатора (4) и первичной обмотки (2).

Группа разработчиков на Смоленщине. Они использовали принцип описанной выше конденсаторной установки. Примерная схема устройства приведена на рис.5. Здесь также от источника колебательной энергии подаётся ток на три последовательно соединённые конденсатора С1, С2, С3. Заряд их пластин колеблется в такт источника раскачки колебаний, но С2 включён схемой в цепь высоковольтной обмотки бытового трансформатора в виде колебательного контура. Естественно, колебательный контур С2 с обмоткой трансформатора воспринимает «маленькие порции» раскачки, и уже сам собой, в результате резонанса с эфиром, начинает выдавать необходимую мощность во вторичную обмотку на полезную нагрузку

220 V. Схема предельно простая, это надо отдать должное «сообразительности» смоленских «парней». Здесь сравнительно небольшой раскачки источника колебаний вполне хватает для резонансного возбуждения силовых колебаний тока в данном контуре, а с вторичной обмотки трансформатора можно спокойно снимать трансформированный ток на любую полезную нагрузку. Возможно, что сам Тесла использовал этот приём для привода своего электромобиля в движение, недаром же он покупал радиолампы в магазине, которые и являлись источником колебательной энергии для обкладок конденсаторов, а индуктивность статорной обмотки тягового электродвигателя служила основной частью колебательного контура – источника тока (вместо первичной обмотки трансформатора в схеме рис.5). А сейчас поговорим о главном – о величине мощности раскачки эфира вокруг ёмкостей и индуктивностей с целью получения свободной энергии (реактивной мощности), поисками которой заняты специалисты во всём техническом мире. Сначала рассмотрим теоретическую сторону вопроса.

Поскольку формула реактивной мощности для любой обмотки Q = I^2*2П*F* L,

Где I -величина тока, F — частота тока, L- индуктивность. Величина L задана геометрией обмотки трансформатора или контура, её изменять трудновато, но её и использовал Капанадзе. Другая величина — частота F может изменяться. В реактивной мощности она задаётся частотой электростанции (источником колебаний), но с увеличением её увеличивается мощность свободной энергии, значит, разумно её повышать при раскачке индуктивности. А раскачать индуктивность по частоте, для получения и повышения тока I необходим конденсатор, подключённый к индуктивности. Но, чтобы начать раскачку контура, нужен первоначальный импульс тока. А его сила, в свою очередь, зависит от активного сопротивления самой обмотки, сопротивления соединительных проводов и, как не удивительно, волнового сопротивления этой цепочки тока. Для постоянного тока этого параметра не существует, а для переменного обязательно возникает и ограничивает наши возможности, а с другой стороны помогает нам. Из уравнений длинных линий связи известно,-волновое сопротивление движения для любой электромагнитной волны по проводам должно быть согласовано с сопротивлением нагрузки в конце линии. Чем лучше согласование, тем экономичнее устройство. В контурах, состоящих из ёмкости и индуктивности, из которых состоит «тесловка», волновое сопротивление определяется величиной которая, если её поделить на активное сопротивление проводников, в принципе, является добротностью контура, т.е. числом, показывающим во сколько раз напряжение в катушке контура возрастает по отношению к задающему напряжению от генератора электростанции (источника раскачки).

Вот этим принципом и пользовался Тесла, изготавливая катушки всё более солидные по размеру, т. е. увеличивая, и увеличивая L — индукцию катушки и чисто интуитивно стремился к волновому числу Zв = 377 Ом. А это и есть волновое сопротивление не чего нибудь, а обыкновенного эфира по Максвеллу, хотя его конкретную величину определили позднее исходя из условий распространения электромагнитных волн в атмосфере и космосе. Приближение к этому числу волнового сопротивления уменьшает мощность раскачки. Отсюда всегда можно хотя бы приблизительно вычислить даже частоту колебаний самого эфира, при которой требуется минимальная энергия раскачки от электростанции для «тесловки» вырабатывающей реактивную энергию, но это отдельная тема рассмотрения.

В будущем видится предельно простой генератор тока для любых мощностей. Это трансформатор приемлемой мощности, первичная обмотка которого подсоединяется через рассчитанный конденсатор (с соответствующей реактивной мощностью) к источнику электрической раскачки сравнительно небольшой мощности, работающего при запуске от аккумулятора. Вторичная обмотка трансформатора через выпрямитель и инвертор выдаёт в расходную сеть необходимый ток с частотой 50 Герц для потребителей и одновременно питает, минуя аккумуляторы, схему раскачки, точнее сам себя (по рис.5.). Сейчас это кажется нереальным в силу закона сохранения энергии, поскольку не учитывается действие эфира, однако в ближайшем будущем такие установки будут широко распространёнными в быту и на производствах. Реактивная мощность, точнее свободная энергия эфира, подчеркнём, эфира Максвелла и Кельвина, должна и будет работать на людей в полной мере, как это предсказывал великий Никола Тесла. Время, которое он предвидел, уже наступило благодаря воспитанной промышленностью громадной армии специалистов электриков и интернету, позволяющему обмениваться мировым опытом.

Источник

Оцените статью
Adblock
detector