Падение мощности электродвигателя при падении напряжения

Содержание
  1. Чем опасно низкое напряжение в сети для электродвигателя?
  2. Почему асинхронный двигатель теряет мощность
  3. Электрические неисправности электродвигателя
  4. Потерял мощность однофазный двигатель
  5. Потерял мощность однофазный двигатель
  6. Потерял мощность однофазный двигатель
  7. Потерял мощность однофазный двигатель
  8. Потерял мощность однофазный двигатель
  9. Потерял мощность однофазный двигатель
  10. Потерял мощность однофазный двигатель
  11. Потерял мощность однофазный двигатель
  12. Потерял мощность однофазный двигатель
  13. Потерял мощность однофазный двигатель
  14. Потерял мощность однофазный двигатель
  15. Потерял мощность однофазный двигатель
  16. Потерял мощность однофазный двигатель
  17. Потерял мощность однофазный двигатель
  18. Кто сейчас на конференции
  19. 13 распространенных причин неисправности электродвигателей
  20. Качество электроэнергии
  21. Частотно-регулируемые приводы
  22. Механические причины
  23. Факторы, связанные с неправильной установкой
  24. Качество электроэнергии
  25. 1. Переходное напряжение
  26. 2. Асимметрия напряжений
  27. 3. Гармонические искажения
  28. Частотно-регулируемые приводы
  29. 4. Отражения на выходных ШИМ-сигналах привода
  30. 5. Среднеквадратичное отклонение тока
  31. 6. Рабочие перегрузки
  32. 7. Нарушение центрирования
  33. 8. Дисбаланс вала
  34. 9. Расшатанность вала
  35. 10. Износ подшипника
  36. Факторы, связанные с неправильной установкой
  37. 11. Неплотно прилегающее основание
  38. 12. Напряжение трубной обвязки
  39. 13. Напряжение на валу
  40. Четыре стратегии для достижения успеха
  41. Качество электроэнергии
  42. 1. Переходное напряжение
  43. 2. Асимметрия напряжений
  44. 3. Гармонические искажения
  45. Причины выхода из строя электродвигателей
  46. Неправильная транспортировка и хранение
  47. Причины выхода из строя в период эксплуатации
  48. Механические неисправности электродвигателя
  49. Аварийные ситуации при работе электродвигателя
  50. Способы защиты электродвигателя
  51. 1. Мотор-автоматы и тепловые реле
  52. 2. Электронные реле защиты двигателей
  53. 3. Термисторы и термореле
  54. 4. Преобразователи частоты
  55. Четыре стратегии для достижения успеха

Чем опасно низкое напряжение в сети для электродвигателя?

При снижении напряжения питания в электродвигателе происходят следующие взаимосвязанные процессы:

1. Понижение напряжения уменьшает электромагнитный момент двигателя. Электромагнитный момент (а, следовательно, и крутящий момент) находятся в квадратичной зависимости от напряжения. Если напряжение понизилось на 10%, электромагнитный момент окажется ниже первоначального на 19% ((0,9U)2=0.81U2). При уменьшении напряжения на 30% момент снизится вдвое.

2. При неизменной нагрузке и снижающемся крутящем моменте скорость вращения двигателя снижается. Как только реальная мощность двигателя окажется недостаточной, чтобы выполнять работу, обусловленную нагрузкой на валу, скорость вращения начнёт снижаться. При значительном снижении напряжения двигатель может совсем остановиться. Снижение частоты вращения означает увеличение скольжения электродвигателя. Обмоткой статора электродвигателя создаётся вращающееся магнитное поле. Под скольжением понимается относительная разность между скоростью вращения электромагнитного поля статора и частотой вращения ротора.

3. Увеличение скольжения увеличивает ЭДС и ток в обмотке ротора. Наводимая в обмотке ротора электродвижущая сила пропорциональна скольжению и достигает максимума в момент пуска.

4 .С появлением тока в обмотке ротора появится и магнитодвижущая сила обмотки ротора. Согласно закону Ленца магнитодвижущая сила ротора будет действовать против магнитодвижущей силы обмотки статора – той самой, которая создаёт дополнительное реактивное сопротивление переменному току.

5. Электромагнитное поле ротора наводит в статоре электродвижущую силу, компенсирующую действие ЭДС самоиндукции статора. Результирующее сопротивление обмотки статора уменьшается, а ток увеличивается в полном соответствии с законом Ома.

6. Тепловыделение проводника пропорционально квадрату силы тока. Вследствие повышения тока происходит разогрев обмоток. Длительное протекание токов перегрузки может вызвать их сильный нагрев, повреждение изоляции и выход машины из строя. Та же участь может постигнуть и проводку в вашем доме, став причиной пожара.

Источник

Почему асинхронный двигатель теряет мощность

Электрические и механические неисправности электродвигателя и способы их устранения. Основные способы защиты двигателей.

Электрические неисправности электродвигателя

Электрические неисправности двигателя всегда связаны с обмоткой.

  1. Межвитковое замыкание может возникнуть при ухудшении изоляции в пределах одной обмотки. Возможные причины: перегрев обмотки, некачественная изоляция, износ изоляции вследствие вибрации. Определить межвитковое замыкание бывает сложно. Основной метод диагностики – сравнение сопротивления и рабочего тока всех трех обмоток. Первые симптомы межвиткового замыкания – повышенный нагрев двигателя и падение момента на валу. При этом по одной из фаз ток больше, чем по двум другим.
  2. Замыкание между обмотками происходит из-за смещения обмоток, механической вибрации и ударов. При отсутствии должной электрической защиты может возникнуть короткое замыкание и пожар.
  3. Замыкание обмотки на корпус. При данной неисправности электродвигатель может продолжать работать, если неправильно выполнены заземление и защита от короткого замыкания. Однако в работе он будет смертельно опасен, так как его потенциал будет находиться под фазным напряжением.
  4. Обрыв обмотки. Эта неисправность равносильна пропаданию фазы. Если обрыв происходит в работе, то двигатель резко теряет мощность и начинает перегреваться. При правильно выполненной защите двигатель отключится, поскольку ток по другим фазам будет повышен.

Для устранения большинства из этих поломок требуется перемотка двигателя.

Потерял мощность однофазный двигатель

Выбор, пуск, схемы подключения и соединения обмоток, реверс различных электродвигателей.

Виктор В Сообщения: 12 Зарегистрирован: 12 авг 2016, 06:26 Репутация: 0 Контактная информация:

Потерял мощность однофазный двигатель

Сообщение Виктор В » 12 авг 2016, 06:35

Здравствуйте.
Деревообрабатывающий станок ЧТЗ (циркулярка, фуганок, рейсмус), был 3-х фазный, 1,1 квт.
Я заменил двигатель на однофазный АДМЕ80А2У2 220В 1,5 квт. Конденсатор 40 мкф 450 В.
И все было хорошо.
Примерно год назад двигатель перестал тянуть, пила стала «вязнуть».
Купил новый конденсатор, такой же (40 мкф), поменял. Ничего не изменилось. Не тянет.
Напряжение иногда снижается до 210 В. Подключение от щитка.
Взял удлинитель с сечением 2,5мм. Не помогло. Длина – 10 м.
Отдал двигатель в перемотку. Ничего не изменилось. Не тянет. Конденсатор проверили там же.
Свозил туда, где хорошее электроснабжение. Ничего не изменилось.
Подключил параллельно второй конденсатор на 40 мкф. Стало 80 мкф. Мощность заметно прибавилась, стало почти как раньше. Но двигатель стал сильно греться.
Подключил параллельно еще конденсатор на 20 мкф. Стало 100 мкф. Не понял, лучше или нет. И греется.
Что делать?
[

elalex Сообщения: 7423 Зарегистрирован: 21 июл 2015, 08:08 Репутация: 588 Откуда: [email protected] Контактная информация:

Потерял мощность однофазный двигатель

Сообщение elalex » 12 авг 2016, 07:28

2.Какой класс изоляции мотора?

Одиночный свободный электрик
Опыт ремонтов квартир 20лет
Высшее электрическое образование
Бывший инженер-электрик
Пенсионер
64 года
Пишу для владельцев частного жилья
Запасной E–mail для россиян: [email protected]

Потерял мощность однофазный двигатель

Сообщение ПАВ » 12 авг 2016, 07:58

Если станок работает в сухом помещении, какой там класс изоляции и при чем тут он? Мощность от того, что там пыль, не падает, если ротор еще вращается.
Виктор В, и что перемотчики нашли?

В жизни все не так, как на самом деле…

Восток Сообщения: 850 Зарегистрирован: 30 янв 2016, 18:07 Репутация: 429 Контактная информация:

Потерял мощность однофазный двигатель

Сообщение Восток » 12 авг 2016, 08:37

Двигатель можно проверить так. Для этого вам понадобится токоизмерительные клещи, и тахометр.

1. Двигатель снять со станка и закрепить его на слесарном станке, так что бы был свободный доступ к торцу вала двигателя..

2. Взять брусок дерева, один конец которого должен стоять жестко в упоре, а за второй конец срединой бруска прижимаете к валу двигателя. ( с усилием)

а) токоизмерительными клещами, ток холостого хода, и тахометром обороты на валу ( без нажатия бруском на вал)

б) токоизмерительными клещами, рабочий ток, и тахометром обороты на валу ( при нажатии бруском на вал).

Если обороты при нажатии сильно падают, видимо причина в двигателе, если обороты падают не значительно значит двигатель в норме.

Потерял мощность однофазный двигатель

Сообщение ПАВ » 12 авг 2016, 08:53

Для начала его включить без нагрузки на вал и измерить ток ХХ.

В жизни все не так, как на самом деле…

elalex Сообщения: 7423 Зарегистрирован: 21 июл 2015, 08:08 Репутация: 588 Откуда: [email protected] Контактная информация:

Потерял мощность однофазный двигатель

Сообщение elalex » 12 авг 2016, 10:46

Если станок работает в сухом помещении, какой там класс изоляции и при чем тут он?

Притом, что у этого мотора класс нагревостойкости изоляции F, т.е. 155 °C. При таком классе что значит “греется” и “сильно греется”? Думаю, если на нем даже кипит вода, то для него это нормально.

А вот сухость помещения здесь ни при чем.

Перемотчики ничего плохого не нашли, но перемотали.

Это еще неизвестно, перемотали или нет.

Одиночный свободный электрик
Опыт ремонтов квартир 20лет
Высшее электрическое образование
Бывший инженер-электрик
Пенсионер
64 года
Пишу для владельцев частного жилья
Запасной E–mail для россиян: [email protected]

elalex Сообщения: 7423 Зарегистрирован: 21 июл 2015, 08:08 Репутация: 588 Откуда: 3alp[email protected] Контактная информация:

Потерял мощность однофазный двигатель

Сообщение elalex » 12 авг 2016, 11:31

Читайте также:  Стабилизатор напряжения для холодильника самсунг с системой ноу фрост

Если “через”, то неизвестно. Бывают мастера, которые делают хорошо через раз.

Одиночный свободный электрик
Опыт ремонтов квартир 20лет
Высшее электрическое образование
Бывший инженер-электрик
Пенсионер
64 года
Пишу для владельцев частного жилья
Запасной E–mail для россиян: [email protected]

Восток Сообщения: 850 Зарегистрирован: 30 янв 2016, 18:07 Репутация: 429 Контактная информация:

Потерял мощность однофазный двигатель

Сообщение Восток » 12 авг 2016, 11:44

Обороты при нагрузке сильно падают. Вязнет в доске.

Это ни о чем не говорит. Вы определяете неисправность исходя что ваш агрегат в целом не выдает тот результат, который вы ожидаете от него.

Причиной падения оборотов может быть как в самом двигателе, так и в самой пиле, если развал зубьев не тот, или в подшипниках .

Поэтому нужно все проверять в отдельности, исключая ту или иную причину.

Потерял мощность однофазный двигатель

Сообщение ПАВ » 12 авг 2016, 11:49

Она при том, что там с потолка не капает и тумана нет, следовательно и IP 44 вполне достаточно.

В жизни все не так, как на самом деле…

Виктор В Сообщения: 12 Зарегистрирован: 12 авг 2016, 06:26 Репутация: 0 Контактная информация:

Потерял мощность однофазный двигатель

Сообщение Виктор В » 12 авг 2016, 11:56

Обороты при нагрузке сильно падают. Вязнет в доске.

Это ни о чем не говорит. Вы определяете неисправность исходя что ваш агрегат в целом не выдает тот результат, который вы ожидаете от него.

Причиной падения оборотов может быть как в самом двигателе, так и в самой пиле, если развал зубьев не тот, или в подшипниках .

Поэтому нужно все проверять в отдельности, исключая ту или иную причину.

Диск пилы менял. Стоит с твердосплавными напайками. Проворачивается от руки легко, без шумов.

А по конденсаторам нет соображений?

Потерял мощность однофазный двигатель

Сообщение ПАВ » 12 авг 2016, 12:28

А ширина и профиль диска и зубы разные? До того какой диск бы, какой профиль и толщина? Если новый зуб- традиционной ориентации- одно, если т.наз “чистый рез” другое- нагрузка больше на мотор, если с отриц. углом- еще больше. На моем торцовочно-распиловочном станке мотор 1,5 кВт, конденсаторный, смена диска очень заметна.

В жизни все не так, как на самом деле…

Виктор В Сообщения: 12 Зарегистрирован: 12 авг 2016, 06:26 Репутация: 0 Контактная информация:

Потерял мощность однофазный двигатель

Сообщение Виктор В » 12 авг 2016, 12:36

А ширина и профиль диска и зубы разные? До того какой диск бы, какой профиль и толщина? Если новый зуб- традиционной ориентации- одно, если т.наз “чистый рез” другое- нагрузка больше на мотор, если с отриц. углом- еще больше. На моем торцовочно-распиловочном станке мотор 1,5 кВт, конденсаторный, смена диска очень заметна.

Нет, диск точно такой же, как был.

Потерял мощность однофазный двигатель

Сообщение ПАВ » 12 авг 2016, 12:54

Тогда начинайте с начала- ток на ХХ, выбег вала и ротора…Чудес не бывает.

В жизни все не так, как на самом деле…

Вернуться в «Электродвигатели переменного и постоянного тока»

Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot] и 4 гостя

13 распространенных причин неисправности электродвигателей

В промышленности электродвигатели используются повсеместно, они становятся технически все сложнее, что часто может осложнять поддержание их работы на пике эффективности. Важно помнить, что причины неисправностей электродвигателей и приводов не ограничиваются одной областью специализации: они могут быть как механического, так и электрического характера. И только нужные знания разделяют дорогостоящий простой и продление срока службы.

Наиболее частые неисправности электродвигателей — повреждения изоляции обмоток и износ подшипников, возникающие по множеству разных причин. Эта статья посвящена заблаговременному обнаружению 13 наиболее распространенных причин повреждений изоляции и выхода из строя подшипников.

Качество электроэнергии

Частотно-регулируемые приводы

Механические причины

Факторы, связанные с неправильной установкой

Качество электроэнергии

1. Переходное напряжение

Переходные напряжения могут происходить из множества источников как на самом предприятии, так и за его пределами. Включение и выключение нагрузки поблизости, батареи конденсаторов коррекции коэффициента мощности или даже погодные явления — все это может создавать переходные напряжения в распределительных сетях. Эти процессы с произвольной амплитудой и частотой могут разрушать или повреждать изоляцию обмоток электродвигателей.

Обнаружение источника переходных процессов может оказаться сложной задачей, поскольку они происходят нерегулярно, а их последствия могут проявляться по-разному. Например, переходные процессы могут проявиться в контрольных кабелях и необязательно нанесут вред непосредственно оборудованию, но они могут нарушить его работу.

Воздействие: повреждение изоляции обмотки электродвигателя приводит к раннему возникновению неисправностей и незапланированному простою.

Критичность: высокая.

2. Асимметрия напряжений

Трехфазные распределительные сети часто питают однофазные нагрузки. Асимметрия сопротивления или нагрузки может быть причиной асимметрии напряжений на всех трех фазах. Возможные неисправности могут находиться в проводке электродвигателя, на клеммах электродвигателя, а также в самих обмотках. Эта асимметрия может вызывать перегрузки в каждой фазной цепи трехфазной сети. Одним словом, напряжение на всех трех фазах всегда должно быть одинаковым.

Воздействие: асимметрия является причиной сверхтоков в одной или нескольких фазах, которые вызывают перегрев и повреждение изоляции.

Критичность: средняя.

3. Гармонические искажения

Проще говоря, гармоники — это любые нежелательные дополнительные высокочастотные колебания напряжения или тока, поступающие на обмотки электродвигателя. Эта дополнительная энергия не используется для вращения вала электродвигателя, а циркулирует в обмотках и в конечном итоге приводит к потере внутренней энергии. Эти потери рассеиваются в виде тепла, которое со временем ухудшает изолирующие свойства обмоток. Некоторые гармонические искажения формы тока являются нормой для систем, питающих электронную нагрузку. Гармонические искажения можно измерить с помощью анализатора качества электроэнергии, проконтролировав величины токов и температуры на трансформаторах и убедившись, что они не перегружены. Для каждой гармоники утвержден приемлемый уровень искажений, который регламентируется стандартом IEEE 519-1992.

Воздействие: снижение эффективности электродвигателя приводит к дополнительным расходам и увеличению рабочей температуры.

Критичность: средняя.

Частотно-регулируемые приводы

4. Отражения на выходных ШИМ-сигналах привода

Частотно-регулируемые приводы используют широтно-импульсную модуляцию (ШИМ) для управления выходным напряжением и частотой питания электродвигателя. Отражения возникают из-за несогласованности полных сопротивлений источника и нагрузки. Несогласованность полных сопротивлений может произойти в результате неправильной установки, неправильного выбора компонентов или ухудшения состояния оборудования со временем. Пик отражения в цепи электропривода может достигать уровня напряжения шины постоянного тока.

Воздействие: повреждение изоляции обмотки электродвигателя приводит к незапланированному простою.

Прибор для измерения и диагностики: Fluke 190-204 ScopeMeter® , 4-канальный портативный осциллограф с высокой частотой выборки.

Критичность: высокая.

5. Среднеквадратичное отклонение тока

По своей сути среднеквадратичное отклонение тока — это паразитные токи, циркулирующие в системе. Среднеквадратичное отклонение тока образуется как результат частоты сигнала, уровня напряжения, емкости и индуктивности в проводниках. Эти циркулирующие токи могут выйти через системы защитного заземления, вызывая ложное размыкание или, в некоторых случаях, нагревание обмотки. Среднеквадратичное отклонение тока можно обнаружить в проводке электродвигателя, это сумма тока с трех фаз в любой момент времени. В идеальной ситуации сумма этих трех токов должна равняться нулю. Иными словами, обратный ток от привода будет равняться току, поступающему на привод. Среднеквадратичное отклонение тока можно также представить в виде асимметричных сигналов в нескольких проводниках, имеющих емкостную связь с заземляющим проводником.

Воздействие: произвольное размыкание цепи из-за прохождения тока по защитному заземлению.

Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke 190-204 ScopeMeter с широкополосными (10 кГц) токовыми клещами (Fluke i400S или аналогичные).

Критичность: низкая.

6. Рабочие перегрузки

Перегрузка электродвигателя возникает, когда он работает под повышенной нагрузкой. Основными признаками перегрузки электродвигателя являются чрезмерное потребление тока, недостаточный крутящий момент и перегрев. Избыточное тепловыделение электродвигателя является главной причиной его неисправности. При перегрузке электродвигателя его отдельные компоненты — включая подшипники, обмотки и другие части — могут работать нормально, но электродвигатель будет перегреваться. Поэтому начинать поиски неисправности следует с проверки именно перегруженности электродвигателя. Поскольку 30% всех неисправностей электродвигателей происходят именно из-за их перегруженности, важно понимать, как измерять и определять перегрузку электродвигателя.

Воздействие: преждевременный износ электрических и механических компонентов электродвигателя, ведущий к необратимому выходу из строя.

Инструмент для измерения и диагностики: цифровой мультиметр Fluke 289.

Критичность: высокая.

7. Нарушение центрирования

Нарушение центрирования возникает при неправильном выравнивании вала привода относительно нагрузки или смещении передачи, которая их соединяет. Многие специалисты считают, что гибкое соединение устраняет и компенсирует смещение, тем не менее, гибкое соединение защищает от смещения только саму передачу. Даже с гибким соединением не отцентрированный вал будет передавать повреждающие циклические усилия по своей длине на электродвигатель, вызывая повышенный износ электродвигателя и увеличивая фактическую механическую нагрузку. Кроме того, нарушение центрирования может быть причиной вибрации валов как нагрузки, так и электропривода. Существует несколько типов нарушения центрирования:

  • Угловое смещение: оси валов пересекаются, но не параллельны;
  • Параллельное смещение: оси валов параллельны, но не соосны;
  • Сложное смещение: сочетание углового и параллельного смещений. (Примечание: практически всегда нарушение центрирования является сложным, но практикующие специалисты рассматривают их как сумму составляющих смещений, поскольку устранять нарушение центрирования проще по отдельности — угловую и параллельную составляющие).
Читайте также:  Рабочее напряжение генератора датсун он до

Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности.

Критичность: высокая.

8. Дисбаланс вала

Дисбаланс — это состояние вращающейся детали, когда центр масс расположен не на оси вращения. Иными словами, когда центр тяжести находится где-то на роторе. Хотя устранить дисбаланс двигателя полностью невозможно, можно определить, не выходит ли он за рамки приемлемых значений, и предпринять меры для исправления ситуации.

Дисбаланс может быть вызван различными причинами:

  • скопление грязи;
  • отсутствие балансировочных грузов;
  • отклонения при производстве;
  • неравная масса обмоток двигателя и другие факторы, связанные с износом.

Тестер или анализатор вибрации поможет определить, сбалансирован вращающийся механизм или нет.

Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности.

Прибор для измерения и диагностики: измеритель вибрации Fluke 810.

Критичность: высокая.

9. Расшатанность вала

Расшатанность возникает из-за чрезмерного зазора между деталями. Расшатанность может возникать в нескольких местах:

  • Расшатанность с вращением возникает из-за чрезмерного зазора между вращающимися и неподвижными частями машины, например, в подшипнике.
  • Расшатанность без вращения возникает между двумя обычно неподвижными деталями, например, между опорой и основанием или корпусом подшипника и машиной.

Как и в случаях со всеми другими источниками вибрации, важно уметь определить расшатанность и устранить проблему, избежав убытков. Определить наличие расшатанности во вращающейся машине можно с помощью тестера или анализатора вибрации.

Влияние: ускоренный износ вращающихся компонентов, вызывающий механические неисправности.

Прибор для измерения и диагностики: измеритель вибрации Fluke 810.

Критичность: высокая.

10. Износ подшипника

Неисправный подшипник имеет повышенное трение, сильнее нагревается и имеет пониженную эффективность из-за механических проблем, проблем со смазкой или износа. Неисправность подшипника может быть следствием различных факторов:

  • нагрузка, превышающая расчетную;
  • недостаточная или неправильная смазка;
  • неэффективная герметизация подшипника;
  • нарушение центрирования вала;
  • неправильная установка;
  • нормальный износ;
  • наведенное напряжение на валу.

Когда неисправности подшипников начинают проявляться, это также вызывает каскадный эффект, ускоряющий выход двигателя из строя. 13% неисправностей двигателя вызваны неисправностями подшипников, и более 60 % механических неисправностей на предприятии вызваны износом подшипников, поэтому важно знать, как устранять эти потенциальные проблемы.

Влияние: ускоренный износ вращающихся компонентов приводит к выходу подшипников из строя.

Прибор для измерения и диагностики: измеритель вибрации Fluke 810.

Критичность: высокая.

Факторы, связанные с неправильной установкой

11. Неплотно прилегающее основание

Неплотное прилегание вызывается неровным монтажным основанием двигателя или приводимого в движение компонента или неровной монтажной поверхностью, на которой располагается монтажное основание. Данное состояние может создать неприятную ситуацию, при которой затяжка монтажных болтов на самом деле привносит новые нагрузки и нарушение центрирования. Неплотное прилегание опоры часто возникает между двумя диагонально расположенными крепежными болтами, как, например, в случае с неровным стулом или столом, которые раскачиваются по диагонали. Существуют два типа неплотного прилегания основания:

  • Параллельное неплотное прилегание основания —возникает, когда одна монтажная опора расположена выше, чем три другие;
  • Угловое неплотное прилегание основания —возникает, когда одна из монтажных опор не параллельна или не перпендикулярна по отношению к монтажной поверхности.

В обоих случаях неплотное прилегание основания может быть вызвано неровностями в монтажной опоре механизма или в монтажном основании, на котором находится опора. В любом случае найти и устранить неплотное прилегание необходимо до центрирования вала. Качественный лазерный инструмент для центрирования может определить неплотное прилегание основания данной вращающейся машины.

Влияние: нарушение центрирования компонентов механического привода.

Критичность: средняя.

12. Напряжение трубной обвязки

Натяжением трубной обвязки называется состояние, при котором новые нагрузки, натяжения и силы, действующие на остальное оборудование и инфраструктуру, передаются назад на двигатель и привод, приводя к нарушению центрирования. Наиболее часто встречающимся примером этого являются простые схемы с электродвигателем/насосом, когда что-то оказывает воздействие на трубопроводы, например:

  • смещение в фундаменте;
  • недавно установленный клапан или другой компонент;
  • предмет, ударяющий, сгибающий или просто давящий на трубу;
  • сломанные или отсутствующие крепления для труб или настенная арматура.

Эти силы могут оказывать угловое или смещающее воздействие, что в свою очередь приводит к смещению вала двигателя/насоса. По этой причине важно проверять центрирование машины не только во время установки — точное центрирование является временным состоянием и может изменяться с течением времени.

Влияние: нарушение центрирования вала и последующие нагрузки на вращающиеся компоненты, приводящие к преждевременным неисправностям.

Критичность: низкая.

13. Напряжение на валу

Когда напряжение на валу электродвигателя превышает изолирующие характеристики смазки подшипника, происходит пробой на внешний подшипник, что вызывает точечную коррозию и образование канавок на дорожке качения подшипника. Первыми признаками проблемы являются шум и перегрев, возникающие по мере того, как подшипники теряют первоначальную форму, а также появление металлической крошки в смазке и увеличение трения подшипника. Это может привести к разрушению подшипника уже через несколько месяцев работы электродвигателя. Неисправность подшипника — это дорогостоящая проблема как с точки зрения восстановления электродвигателя, так и с точки зрения простоя оборудования, поэтому предотвращение этого посредством измерения напряжения на валу и тока в подшипниках является важной частью диагностики. Напряжение на валу присутствует только тогда, когда на двигатель подается питание, и он вращается. Угольная щетка, устанавливаемая на щуп, позволяет измерять напряжение на валу при вращении электродвигателя.

Влияние: дуговые разряды на поверхности подшипника вызывают точечную коррозию и образование канавок, что в свою очередь приводит к чрезмерной вибрации и последующей неисправности подшипника.

Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke-190-204 ScopeMeter, щуп AEGIS с угольными щетками для измерения напряжения на валу.

Критичность: высокая.

Четыре стратегии для достижения успеха

Системы управления электродвигателями используются в важных процессах на заводах. Поломка оборудования может привести к большим финансовым потерям, связанным как с потенциальной заменой электродвигателя и его деталей, так и с простоем систем, зависящих от данного электродвигателя. Обеспечивая обслуживающих инженеров и техников необходимыми знаниями, определяя приоритеты работ и проводя профилактическое обслуживание для контроля оборудования и устранения трудно обнаруживаемых проблем, зачастую можно избежать неисправностей, вызванных рабочими нагрузками, и сократить потери от простоя.

Существуют четыре ключевые стратегии для устранения или предотвращения преждевременных поломок электродвигателя и вращающихся деталей:

  1. Запись рабочих условий, технических характеристик оборудования и диапазонов допусков рабочих характеристик.
  2. Регулярный сбор и запись критических измерений при установке, до и после технического обслуживания.
  3. Создание архива эталонных измерений для анализа тенденций и обнаружения изменения состояния.
  4. Построение графиков отдельных измерений для выявления основных тенденций.Любые изменения в линии тенденций более чем на +/- 10-20% (или любую другую определенную величину, в зависимости от эксплуатационных характеристик или критичности системы) необходимо исследовать для выявления причин возникновения проблем.

Качество электроэнергии

1. Переходное напряжение

Переходные напряжения могут происходить из множества источников как на самом предприятии, так и за его пределами. Включение и выключение нагрузки поблизости, батареи конденсаторов коррекции коэффициента мощности или даже погодные явления — все это может создавать переходные напряжения в распределительных сетях. Эти процессы с произвольной амплитудой и частотой могут разрушать или повреждать изоляцию обмоток электродвигателей. Обнаружение источника переходных процессов может оказаться сложной задачей, поскольку они происходят нерегулярно, а их последствия могут проявляться по-разному. Например, переходные процессы могут проявиться в контрольных кабелях и необязательно нанесут вред непосредственно оборудованию, но они могут нарушить его работу.

Воздействие: повреждение изоляции обмотки электродвигателя приводит к раннему возникновению неисправностей и незапланированному простою.

Прибор для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.

Критичность: высокая.

2. Асимметрия напряжений

Трехфазные распределительные сети часто питают однофазные нагрузки. Асимметрия сопротивления или нагрузки может быть причиной асимметрии напряжений на всех трех фазах. Возможные неисправности могут находиться в проводке электродвигателя, на клеммах электродвигателя, а также в самих обмотках. Эта асимметрия может вызывать перегрузки в каждой фазной цепи трехфазной сети. Одним словом, напряжение на всех трех фазах всегда должно быть одинаковым.

Читайте также:  Для чего нужно напряжение смещения

Воздействие: асимметрия является причиной сверхтоков в одной или нескольких фазах, которые вызывают перегрев и повреждение изоляции.

Инструмент для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.

Критичность: средняя.

3. Гармонические искажения

Проще говоря, гармоники — это любые нежелательные дополнительные высокочастотные колебания напряжения или тока, поступающие на обмотки электродвигателя. Эта дополнительная энергия не используется для вращения вала электродвигателя, а циркулирует в обмотках и в конечном итоге приводит к потере внутренней энергии. Эти потери рассеиваются в виде тепла, которое со временем ухудшает изолирующие свойства обмоток. Некоторые гармонические искажения формы тока являются нормой для систем, питающих электронную нагрузку. Гармонические искажения можно измерить с помощью анализатора качества электроэнергии, проконтролировав величины токов и температуры на трансформаторах и убедившись, что они не перегружены. Для каждой гармоники утвержден приемлемый уровень искажений, который регламентируется стандартом IEEE 519-1992.

Воздействие: снижение эффективности электродвигателя приводит к дополнительным расходам и увеличению рабочей температуры.

Инструмент для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.

Критичность: средняя.

Причины выхода из строя электродвигателей

Все неисправности можно условно разделить на две группы – выход из строя в результате неправильной транспортировки или хранения и поломки, появившиеся в период эксплуатации.

Неправильная транспортировка и хранение

Основной проблемой, появляющейся в этот период, является повышенная влажность, а тем более попадание электромашины под дождь. Это приводит к нарушению изоляции, а в более тяжёлых случаях к появлению внутри устройства и подшипников ржавчины.

Поэтому перед установкой такого аппарата необходимо провести его текущий ремонт и устранить обнаруженные проблемы:

  • произвести внешний осмотр машины, изоляции на выводах и внутренних перемычках;
  • проверить мегомметром состояние изоляции;
  • проверить наличие смазки и состояние подшипников;
  • в коллекторных двигателях постоянного и переменного тока, а также в асинхронных машинах с фазным ротором, определяется состояние коллектора или токосъёмных колец и щёток.

Все эти операции производятся на складе или в мастерской рядом с местом будущей установки. При невозможности устранения проблем электромашина отправляется на специализированное предприятие для проведения среднего ремонта.

Причины выхода из строя в период эксплуатации

В период эксплуатации основными причинами выхода из строя электромашины являются:

  • Механический износ подшипников. Это происходит на протяжении всего срока службы, а так же вследствие повышенной вибрации и нерегулярной замены смазки. Для предотвращения таких ситуаций необходимо производить в полном объёме техническое обслуживание всех узлов и механизмов. Несвоевременное устранение неисправности ведёт к повышенной вибрации двигателя, перегреву подшипниковых щитов, износу посадочных мест подшипников и заклиниванию ротора.
  • Разрушение корпуса, болтов и посадочных мест подшипников. Возникает из-за повышенной вибрации редуктора и плохой центровки электродвигателя. Необходимо немедленно устранить или заменить электропривод. Последствия аналогичны выходу из строя подшипников.
  • Перегруз двигателя и работа трёхфазных устройств на две фазы. От этого защищают правильно настроенные тепловые реле. При отсутствии защиты аппарат перегреется свыше предельно допустимой температуры, что приведёт к выходу электромашины из строя.

Справка! В новых электродвигателях устанавливается датчик температуры, отключающий механизм при перегреве устройства. Его также можно дополнительно установить в двигатель старой модели.

Механические неисправности электродвигателя

Механические неисправности электродвигателя связаны с его конструкцией.

  1. Износ и трение в подшипниках. Проявляется в повышении механической вибрации и шума при работе. В этом случае требуется замена подшипников, иначе неисправность приведет к перегреву и падению производительности двигателя.
  2. Проворачивание ротора на валу. Ротор может вращаться в магнитном поле статора, а вал будет неподвижен. Требуется механическая фиксация ротора на валу.
  3. Зацепление ротора за статор. Эта проблема связана с механической поломкой подшипников, их посадочных мест или корпуса двигателя. Кроме того, подобная неисправность приводит к повреждению обмотки статора. Практически не подлежит ремонту.
  4. Повреждение корпуса двигателя. Может происходить из-за ударов, повышенных нагрузок, неправильного крепления или низкого качества двигателя. Ремонт является трудоемким из-за трудностей соосной установки переднего и заднего подшипников.
  5. Проворачивание или повреждение крыльчатки обдува. Несмотря на то, что двигатель продолжит работать, он будет перегреваться, что существенно сократит срок его службы. Крыльчатку необходимо закрепить (для этого используется шпонка или стопорное кольцо) или заменить.

Аварийные ситуации при работе электродвигателя

Существуют неисправности, не связанные непосредственно с двигателем, но влияющие на его работу, характеристики и срок службы. Большинство этих неисправностей вызваны механической перегрузкой, увеличением тока, и, как следствие, перегревом обмоток и корпуса.

  1. Увеличение нагрузки на валу вследствие заклинивания привода либо приводимых механизмов.
  2. Перекос напряжения питания, который может быть вызван проблемами питающей сети либо внутренними проблемами привода.
  3. Пропадание фазы, которое может произойти на любом участке питания двигателя – от питающей трансформаторной подстанции до обмотки двигателя.
  4. Проблема с обдувом (охлаждением). Может возникнуть из-за повреждения крыльчатки двигателя при собственном охлаждении, из-за останова вентилятора внешнего принудительного охлаждения или вследствие значительного повышения температуры окружающей среды.

Способы защиты электродвигателя

Для защиты электродвигателя от внутренних и внешних неисправностей, а также для минимизации дальнейших трудозатрат по его ремонту применяют различные устройства.

1. Мотор-автоматы и тепловые реле

Мотор-автоматы (автоматы защиты двигателя) и тепловые реле используют для обнаружения превышения тока по одной или всем фазам двигателя. В случае превышения через некоторое время происходит отключение привода.

В отличие от мотор-автомата, у теплового реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать двигатель.

Минус теплового реле заключается в отсутствии защиты от короткого замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от короткого замыкания, которая мгновенно срабатывает и выключает двигатель при превышении тока уставки в 10-20 раз.

Данные устройства используются наиболее широко и при правильной установке и настройке способны с большой долей вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.

2. Электронные реле защиты двигателей

Данный вид защиты обеспечивает большой выбор различных защит. Основным элементом таких реле является микропроцессор, который анализирует мгновенные значения напряжения и тока и принимает решения на основе заданных настроек. Это может быть выдача сигнала на индикацию либо на отключение двигателя.

3. Термисторы и термореле

Когда по какой-то причине не сработала тепловая защита по перегрузке, последний рубеж обороны — термозащита. Внутрь обмотки устанавливается термочувствительный элемент (как правило, термистор или позистор), который меняет свое сопротивление в зависимости от температуры. При пересечении порога срабатывает соответствующая защита, и двигатель отключается.

Возможно применение более простых дискретных термореле (термоконтактов), которые размыкают контрольную или тепловую цепь, что приводит к аварийной остановке электродвигателя.

4. Преобразователи частоты

Обычно преобразователи частоты располагают несколькими видами защиты – по превышению момента и тока, по превышению напряжения, обрыву фазы и проч. Кроме того, возможно ограничение момента и тока. В этом случае на двигатель будет подаваться напряжение с меньшим уровнем и частотой, если будет обнаружена перегрузка. При этом будет выдано соответствующее сообщение оператору, а двигатель может продолжать работать.

Также производители частотных преобразователей рекомендуют устанавливать защитный автомат на входе ПЧ, тепловое реле на выходе и термисторную защиту.

Другие полезные материалы:
Выбор электродвигателя для компрессора
Как определить параметры двигателя без шильдика?
Выбор мотор-редуктора для буровой установки

Четыре стратегии для достижения успеха

Системы управления электродвигателями используются в важных процессах на заводах. Поломка оборудования может привести к большим финансовым потерям, связанным как с потенциальной заменой электродвигателя и его деталей, так и с простоем систем, зависящих от данного электродвигателя. Обеспечивая обслуживающих инженеров и техников необходимыми знаниями, определяя приоритеты работ и проводя профилактическое обслуживание для контроля оборудования и устранения трудно обнаруживаемых проблем, зачастую можно избежать неисправностей, вызванных рабочими нагрузками, и сократить потери от простоя.
Существуют четыре ключевые стратегии для устранения или предотвращения преждевременных поломок электродвигателя и вращающихся деталей:

  1. Запись рабочих условий, технических характеристик оборудования и диапазонов допусков рабочих характеристик.
  2. Регулярный сбор и запись критических измерений при установке, до и после технического обслуживания.
  3. Создание архива эталонных измерений для анализа тенденций и обнаружения изменения состояния.
  4. Построение графиков отдельных измерений для выявления основных тенденций. Любые изменения в линии тенденций более чем на +/- 10-20 % (или любую другую определенную величину, в зависимости от эксплуатационных характеристик или критичности системы) необходимо исследовать для выявления причин возникновения проблем.

Источник

Оцените статью
Adblock
detector