Перегрузочная способность асинхронного двигателя какова ее зависимость от напряжения

Перегрузочная способность, кратности моментов и токов двигателя.

При анализе параметров двигателя обычно сравнивают значения параметров в пусковом и максимальном режимах с номинальным режимом. При этом используют не абсолютные значения моментов и токов, а относительные. т.е. отнесенные к номинальному режиму.

Относительный максимальный момент двигателя определяет его перегрузочную способность, т.е. способность двигателя кратковременно выдерживать нагрузки, большие номи­нальной.

В электрических машинах перегрузочная способность обозначает kм и определяется

В серийных асинхронных двигателях перегрузочная способность ( кратность максимального момента) лежит в пределах

Перегрузочная способность не имеет размерности и показывает во сколько раз по сравнению с номинальным моментом можно кратковременно повысить момент двигателя без ущерба для его работы.

Относительное значение пускового моментаkп (кратность пускового момента) опреде­ляет способность двигатели разгоняться до рабочей часто­ты вращения с полной нагрузкой на валу и определяется по формуле:

В серийных асинхронных двигателях кратность пускового момента лежит в пределах

Относительное значение пускового токаkТ (кратность пускового тока) опреде­ляет способность двигатели кратковременно выдерживать большие значения пускового тока и определяется по формуле:

В серийных асинхронных двигателях кратность пускового тока лежит в пределах

Из данной формулы можно сделать вывод, двигатель способен выдерживать ток в 7 раз больший, чем номинальный. Однако такое значение двигатель может выдержать кратковременно (несколько секунд). Если двигатель работает нормально, то этого времени достаточно, чтобы двигатель набрал обороты и значение тока уменьшились ( см. пусковые характеристики).

Если на валу двигателя большая механическая нагрузка, сам ротор очень тяжел, подшипники не прокручиваются или какие-либо другие неисправности, которые не позволяют быстро раскрутиться ротору двигателя, то большой пусковой ток будет протекать по обмоткам длительное время. Это приводит к перегреву обмоток, разрушению их изоляции и выходу двигателя из строя.

Для запуска тяжелых двигателей существуют специальные методы ограничения пускового тока (см. Занятие 40)

Дата добавления: 2014-12-24 ; просмотров: 10463 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Проверка двигателя на перегрузочную способность

Выбранный двигатель по нагрузке, приведенной к валу должен быть проверен на перегрузочную способность при перегрузках в рабочем режиме, а также возникающих во время пуска.

Проверка двигателя по перегрузкам, возникающим во время работы проводится исходя из условия:

где, (4.1)

– номинальная мощность выбранного двигателя. (В)

– максимальная мощность двигателя по нагрузке. (В)

– допустимая перегрузочная способность по максимальному моменту.

Согласно правил устройство электроустановок (ПУЭ) напряжение на зажимах работающих двигателей при пуске второго двигателя не должно быть меньше 0,8.

С учетом этого требования и определяется Доп. По формуле:

где, (4.2)

– номинальный момент двигателя;

— максимальный момент двигателя.

Для двигателей, применяемых в условиях с/х. производства отношением номинального и максимального моментов следует принимать при синхронной частоте вращения:

1500об./мин.=2,0 (кроме двигателей мощностью до 3 кВт у которых это отношение =2,2)

1000об./мин. =1,8 (кроме двигателей мощностью до 2,2 кВт у которых это отношение =2,2)

У остальных двигателей

Исходя из этих данных мы получаем:

После произведённого расчёта мы видим, что двигатель соответствует требованием по перегрузочной способности и будет работать в нормальном режиме.

Источник

Большая Энциклопедия Нефти и Газа

Перегрузочная способность — асинхронный двигатель

Перегрузочная способность асинхронного двигателя в режиме х / 2 / 2н0м теоретически неограниченна и достигается путем непрерывной компенсации напряжения на полном сопротивлении обмотки статора и индуктивном сопротивлении рассеяния обмотки ротора путем регулирования напряжения статора. Зависимости напряжения обмотки статора от частоты и момента ( см. рис. 3.19, б) в этом режиме показывают необходимость регулирования напряжения статора при изменении как частоты, так и момента нагрузки. [2]

Увеличение перегрузочной способности асинхронного двигателя ведет к возрастанию его габаритов и массы или к снижению энергетических показателей. Из формулы (4.48) видно, что значение максимального момента приблизительно обратно пропорционально индуктивным сопротивлениям Xi X 2 обмоток. А это приводит к возрастанию магнитного потока ( а следовательно, к увеличению сечения магнитопровода) и тока холостого хода. Поэтому двигатели с повышенным значением / см имеют большие габариты и массу, а ток холостого хода у них достигает 40 — 60 % от номинального. [4]

Увеличение перегрузочной способности асинхронного двигателя ведет к возрастанию его габаритов и массы либо к снижению энергетических показателей. Из формулы (5.48) видно, что величина максимального момента приблизительно обратно пропорциональна индуктивным сопротивлениям Х1 Х 2 обмоток. А это приводит к возрастанию магнитного потока ( а следовательно, увеличению сечения магнитопровода) и тока холостого хода. [6]

Увеличение перегрузочной способности асинхронного двигателя ведет к возрастанию его габаритов и массы или к снижению энергетических показателей. Из (4.5) видно, что величина максимального момента приблизительно обратно пропорциональна индуктивным сопротивлениям ( Х Х а) обмоток. Это приводит к возрастанию магнитного потока ( а следовательно, увеличению сечения магнитопровода) и тока холостого хода. [7]

При проверке перегрузочной способности асинхронного двигателя исходят из того, что наибольшие кратковременно действую-ющие значения мощности должны быть меньше максимально допустимой для данного двигателя мощности, которая определяется опрокидывающим моментом М макс. [8]

Иными причинами ограничивается перегрузочная способность асинхронного двигателя . Из рис. 11 можно видеть, что при увеличении нагрузки на валу такой двигатель соответственно увеличивает свой движущий момент лишь до максимального ( критического) значения момента Ммакс. Если момент нагрузки превысит максимальный момент Ммакс, двигатель останавливается, так как дальнейшее снижение его скорости вызывает не увеличение движущего момента, а уменьшение его. [9]

Максимальный момент определяет перегрузочную способность асинхронного двигателя . Выражение (14.32) показывает, что М тдх не зависит от активного сопротивления цепи ротора, в то же время согласно (14.30) и (14.31) критическое скольжение пропорционально этому сопротивлению. Следовательно, увеличивая активное сопротивление цепи ротора, можно увеличивать критическое скольжение, не изменяя максимальный момент. Эта возможность используется для улучшения пусковых условий в двигателях с фазным ротором. [10]

Читайте также:  Что такое напряжение в сварочном полуавтомате

Максимальный момент определяет перегрузочную способность асинхронного двигателя . Выражение (14.32) показывает, что Мтах не зависит от активного сопротивления цепи ротора, в то же время согласно (14.30) и (14.31) критическое скольжение пропорционально этому сопротивлению. Следовательно, можно, увеличивая активное сопротивление цепи ротора, увеличивать критическое скольжение, не изменяя максимальный момент. Это используется для улучшения пусковых условий в двигателях с фазным ротором. [11]

Максимальный момент определяет перегрузочную способность асинхронного двигателя . Выражение ( 14 — 32) показывает, что УИМ не зависит от активного сопротивления цепи ротора, в то же время согласно ( 14 — 30) и ( 14 — 31) критическое скольжение пропорционально этому сопротивлению. Следовательно, можно, увеличивая активное сопротивление цепи ротора, увеличивать критическое скольжение, не изменяя максимальный момент. Это используется для улучшения пусковых условий в двигателях с фазным ротором и в двигателях с вытеснением тока. [12]

Следует подчеркнуть, что увеличение перегрузочной способности асинхронного двигателя ведет к возрастанию его габаритов и массы либо к снижению энергетических показателей. [13]

Какой тип защиты больше отвечает перегрузочным способностям асинхронных двигателей , токовая с ограниченно зависимой характеристикой или термическая. Почему для защиты от перегрузки двигателей собственного расхода электрических станций принимается токовое зависимое реле. В каких случаях должны применяться термические реле для защиты асинхронных двигателей. [14]

Кроме того, условие ЧГ2 const дает существенное повышение перегрузочной способности асинхронного двигателя . Однако если стремиться вести управление таким образом, чтобы при широких пределах изменения момента иметь минимальные потери энергии в двигателе, от условия 4f2 const приходится отказаться. При этом в области малых моментов нужно снижать поток, обеспечивая уменьшение суммарных потерь энергии за счет уменьшения потерь на намагничивание. Заметим, что оптимальное по критерию минимума потерь управление двигателем постоянного тока также требует уменьшения тока возбуждения по мере снижения момента. [15]

Источник

Чем определяется перегрузочная способность асинхронного двигателя

При выборе системы электропривода не маловажной задачей является правильный выбор электродвигателя. Ведь ошибка в выборе электромашины сведет на нет всю работу системы.

Перегрузочная способность, кратности моментов и токов двигателя.

При анализе параметров двигателя обычно сравнивают значения параметров в пусковом и максимальном режимах с номинальным режимом. При этом используют не абсолютные значения моментов и токов, а относительные. т.е. отнесенные к номинальному режиму.

Относительный максимальный момент двигателя определяет его перегрузочную способность, т.е. способность двигателя кратковременно выдерживать нагрузки, большие номи­нальной.

В электрических машинах перегрузочная способность обозначает kм и определяется

В серийных асинхронных двигателях перегрузочная способность ( кратность максимального момента) лежит в пределах

Перегрузочная способность не имеет размерности и показывает во сколько раз по сравнению с номинальным моментом можно кратковременно повысить момент двигателя без ущерба для его работы.

Относительное значение пускового моментаkп (кратность пускового момента) опреде­ляет способность двигатели разгоняться до рабочей часто­ты вращения с полной нагрузкой на валу и определяется по формуле:

В серийных асинхронных двигателях кратность пускового момента лежит в пределах

Относительное значение пускового токаkТ (кратность пускового тока) опреде­ляет способность двигатели кратковременно выдерживать большие значения пускового тока и определяется по формуле:

В серийных асинхронных двигателях кратность пускового тока лежит в пределах

Из данной формулы можно сделать вывод, двигатель способен выдерживать ток в 7 раз больший, чем номинальный. Однако такое значение двигатель может выдержать кратковременно (несколько секунд). Если двигатель работает нормально, то этого времени достаточно, чтобы двигатель набрал обороты и значение тока уменьшились ( см. пусковые характеристики).

Если на валу двигателя большая механическая нагрузка, сам ротор очень тяжел, подшипники не прокручиваются или какие-либо другие неисправности, которые не позволяют быстро раскрутиться ротору двигателя, то большой пусковой ток будет протекать по обмоткам длительное время. Это приводит к перегреву обмоток, разрушению их изоляции и выходу двигателя из строя.

Для запуска тяжелых двигателей существуют специальные методы ограничения пускового тока (см. Занятие 40)

Дата добавления: 2014-12-24 ; просмотров: 9046 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Как происходит проверка на перегрузку

Как проверить двигатель на перегрузочную способность? Расчеты производятся исходя из зависимости момента на валу от времени, а именно:

  • Максимальный момент двигателя должен быть больше максимального момента нагрузки (или равен ему), т.е. M max ≥ M C max.
  • Максимальный момент двигателя равен максимальному коэффициенту перегрузки и номинальному моменту двигателя, т.е. M max = ƛm Mн.

Перегрузочная способность — асинхронный двигатель

Перегрузочная способность асинхронного двигателя в режиме х / 2 / 2н0м теоретически неограниченна и достигается путем непрерывной компенсации напряжения на полном сопротивлении обмотки статора и индуктивном сопротивлении рассеяния обмотки ротора путем регулирования напряжения статора. Зависимости напряжения обмотки статора от частоты и момента ( см. рис. 3.19, б) в этом режиме показывают необходимость регулирования напряжения статора при изменении как частоты, так и момента нагрузки. [2]

Увеличение перегрузочной способности асинхронного двигателя ведет к возрастанию его габаритов и массы или к снижению энергетических показателей. Из формулы (4.48) видно, что значение максимального момента приблизительно обратно пропорционально индуктивным сопротивлениям Xi X 2 обмоток. А это приводит к возрастанию магнитного потока ( а следовательно, к увеличению сечения магнитопровода) и тока холостого хода. Поэтому двигатели с повышенным значением / см имеют большие габариты и массу, а ток холостого хода у них достигает 40 — 60 % от номинального. [4]

Увеличение перегрузочной способности асинхронного двигателя ведет к возрастанию его габаритов и массы либо к снижению энергетических показателей. Из формулы (5.48) видно, что величина максимального момента приблизительно обратно пропорциональна индуктивным сопротивлениям Х1 Х 2 обмоток. А это приводит к возрастанию магнитного потока ( а следовательно, увеличению сечения магнитопровода) и тока холостого хода. [6]

Читайте также:  Инфракрасная греющая пленка hot film напряжение 12 вольт

Увеличение перегрузочной способности асинхронного двигателя ведет к возрастанию его габаритов и массы или к снижению энергетических показателей. Из (4.5) видно, что величина максимального момента приблизительно обратно пропорциональна индуктивным сопротивлениям ( Х Х а) обмоток. Это приводит к возрастанию магнитного потока ( а следовательно, увеличению сечения магнитопровода) и тока холостого хода. [7]

При проверке перегрузочной способности асинхронного двигателя исходят из того, что наибольшие кратковременно действую-ющие значения мощности должны быть меньше максимально допустимой для данного двигателя мощности, которая определяется опрокидывающим моментом М макс. [8]

Иными причинами ограничивается перегрузочная способность асинхронного двигателя . Из рис. 11 можно видеть, что при увеличении нагрузки на валу такой двигатель соответственно увеличивает свой движущий момент лишь до максимального ( критического) значения момента Ммакс. Если момент нагрузки превысит максимальный момент Ммакс, двигатель останавливается, так как дальнейшее снижение его скорости вызывает не увеличение движущего момента, а уменьшение его. [9]

Максимальный момент определяет перегрузочную способность асинхронного двигателя . Выражение (14.32) показывает, что М тдх не зависит от активного сопротивления цепи ротора, в то же время согласно (14.30) и (14.31) критическое скольжение пропорционально этому сопротивлению. Следовательно, увеличивая активное сопротивление цепи ротора, можно увеличивать критическое скольжение, не изменяя максимальный момент. Эта возможность используется для улучшения пусковых условий в двигателях с фазным ротором. [10]

Максимальный момент определяет перегрузочную способность асинхронного двигателя . Выражение (14.32) показывает, что Мтах не зависит от активного сопротивления цепи ротора, в то же время согласно (14.30) и (14.31) критическое скольжение пропорционально этому сопротивлению. Следовательно, можно, увеличивая активное сопротивление цепи ротора, увеличивать критическое скольжение, не изменяя максимальный момент. Это используется для улучшения пусковых условий в двигателях с фазным ротором. [11]

Максимальный момент определяет перегрузочную способность асинхронного двигателя . Выражение ( 14 — 32) показывает, что УИМ не зависит от активного сопротивления цепи ротора, в то же время согласно ( 14 — 30) и ( 14 — 31) критическое скольжение пропорционально этому сопротивлению. Следовательно, можно, увеличивая активное сопротивление цепи ротора, увеличивать критическое скольжение, не изменяя максимальный момент. Это используется для улучшения пусковых условий в двигателях с фазным ротором и в двигателях с вытеснением тока. [12]

Следует подчеркнуть, что увеличение перегрузочной способности асинхронного двигателя ведет к возрастанию его габаритов и массы либо к снижению энергетических показателей. [13]

Какой тип защиты больше отвечает перегрузочным способностям асинхронных двигателей , токовая с ограниченно зависимой характеристикой или термическая. Почему для защиты от перегрузки двигателей собственного расхода электрических станций принимается токовое зависимое реле. В каких случаях должны применяться термические реле для защиты асинхронных двигателей. [14]

Кроме того, условие ЧГ2 const дает существенное повышение перегрузочной способности асинхронного двигателя . Однако если стремиться вести управление таким образом, чтобы при широких пределах изменения момента иметь минимальные потери энергии в двигателе, от условия 4f2 const приходится отказаться. При этом в области малых моментов нужно снижать поток, обеспечивая уменьшение суммарных потерь энергии за счет уменьшения потерь на намагничивание. Заметим, что оптимальное по критерию минимума потерь управление двигателем постоянного тока также требует уменьшения тока возбуждения по мере снижения момента. [15]

ЛИТЕРАТУРА

  1. Веников В.А. Переходные электромеханические процессы в электрических системах. – М.: Энергия, 1985, 530 с.
  2. Жданов П.С. Устойчивость электрических систем. – М.: Энергия, 1986, 480 с.
  3. Электрические системы: Математические хадачи электроэнергетики /Под. ред. В.А. Веникова/ – М.: Высшая школа, 1981, 278 с.
  4. Электрические системы: Управление переходными режимами электроэнергетических систем /Под. ред. В.А. Веникова/ – М.: Высшая школа, 1982, 244 с.
  5. Электроэнергетические системы в примерах и иллюстрациях /Под. ред. В.А. Веникова/ – М.: Энергоатомиздат, 1983, 456 с.
  6. Сыромятников И.А. Режимы работы асинхронных и синхронных двигателей. – М.: Энергия, 1963, 400 с.

Чтобы перейти к списку всех методических указаний,

нажмите левой кнопкой мыши

здесь Скачать файл (841.8 kb.)

Класс энергоэффективности

В настоящее время вопросам энергоэффективности уделяется огромное внимание. При этом под энергоэффективностью понимается рациональное использование энергетических ресурсов, с помощью которого достигается уменьшение потребления энергии при том же уровне мощности нагрузки. Основным показателем энергоэффективности двигателя является его коэффициент полезного действия

где Р2 – полезная мощность на валу, Р1 – потребляемая активная мощность из сети.

Стандартом IEC 60034-30 для асинхронных электродвигателей с короткозамкнутым ротором были установлены три класса энергоэффективности: IE1, IE2, IE3.

Рис. 1. Классы энергоэффективности

Так, например, использование двигателя мощностью 55 кВт повышенного класса энергоэффективности позволяет сэкономить около 8000 кВт в год от одного двигателя.

Степень защиты IP, виды климатических условий и категорий размещения

ГОСТ Р МЭК 60034-5 – 2007 устанавливает классификацию степеней защиты, обеспечиваемых оболочками машин.

Обозначение степени защиты состоит из букв латинского алфавита IP и последующих двух цифр (например, IP55).

Большинство электродвигателей, выпускаемых в настоящее время, имеют степени защиты IP54 и IP55.

Категория размещения обозначается цифрой:

2 – под навесом при отсутствии прямого солнечного воздействия и атмосферных осадков;

3 – в закрытых помещениях без искусственного регулирования климатических условий;

4 – в закрытых помещениях с искусственно регулируемыми климатическими условиями.

Климатические условия:

УХЛ – умеренно холодный климат;

Таким образом, при выборе электродвигателя необходимо учитывать условия окружающей среды (температура, влажность), а также необходимость защиты двигателя от воздействия инородных предметов и воды.

Например, использование электродвигателя с типом климатического исполнения и категорией размещения У3 на открытом воздухе является недопустимым.

Усилия, действующие на вал двигателя со стороны нагрузки

Наиболее нагруженными в двигателе являются подшипниковые узлы. Поэтому при выборе двигателя должны быть учтены радиальные и осевые усилия, действующие на рабочий конец вала двигателя со стороны нагрузки. Превышения допустимых значений сил приводит к ускоренному выходу из строя не только подшипников, но и всего двигателя (например, задевание ротора о статор).

Читайте также:  При напряжении пресса поднимаются яички

Обычно допустимые значения сил для каждого подшипника приведены в каталогах. Рекомендуется в случае повышенных радиальных усилий (ременная передача) на рабочий конец вала установить роликовый подшипник, при этом предпочтительным является двигатель с чугунными подшипниковыми щитами.

Особенности конструкции двигателя при работе от преобразователя частоты

В настоящее время все большее распространение приобретает использование частотно-регулируемого привода (ЧРП), выполненного на основе асинхронного электродвигателя с короткозамкнутым ротором.

При использовании частотно-регулируемого привода достигается:

1. экономия электроэнергии;

2. плавность пуска и снижение пусковых токов;

3. увеличение срока службы двигателя.

В общем случае стандартный электродвигатель нельзя использовать в составе частотно-регулируемого привода, так как при уменьшении скорости вращения снижается эффективность охлаждения. При регулировании скорости вверх от номинальной резко увеличивается нагрузка от собственного вентилятора. В обоих случаях уменьшается нагрузочная способность двигателя. Кроме того, в случае использования двигателя в системах точного регулирования необходим датчик положения ротора двигателя.

При работе электродвигателя от преобразователя частоты в контуре вал – фундаментная плита могут протекать токи. При этом возникает точечная эрозия на шариках и роликах, на беговых кольцах подшипников качения, а также на баббитовой поверхности подшипников скольжения. От электролиза смазка чернеет, подшипники греются. Для разрыва контура прохождения подшипниковых токов на неприводной конец вала устанавливается изолированный подшипник. При этом по условиям безопасности установка изолированных подшипников с двух сторон двигателя не допустима.

Величина подшипниковых токов становится опасной для безаварийной работы двигателя при напряжении между противоположными концами вала более 0,5 В. Поэтому установка изолированного подшипника обычно требуется для электродвигателей с высотой оси вращения более 280 мм.

Необходимо отметить, что в случае отклонения условий эксплуатации двигателя (например, температуры окружающей среды или высоты над уровнем моря), мощность нагрузки должна быть изменена. Кроме того, при снижении мощности нагрузки в определенные моменты времени для рационального использования двигателя может быть изменена схема соединения обмотки, а, следовательно, и фазное напряжение.

Популярные товары

Шины изолированные гибкие и твердые

Индикаторы наличия напряжения

Как проходит проверка на нагрев

Существуют следующие способы проверки двигателя на нагрев:

  • по методу эквивалентного тока;
  • по методу эквивалентной мощности;
  • по методу эквивалентного момента.

В первом случае необходимо иметь точные расчеты (лучше в виде графика) зависимости тока от времени в ходе работы электродвигателя.

Проверка по методу эквивалентной мощности используется для двигателей, которые работают при постоянных оборотах равно как при постоянном магнитном потоке.

Если двигатель работает при постоянном магнитном потоке (двигатель постоянного тока с независимым возбуждением или асинхронный двигатель, который работает при скольжении, приближенном к номинальному), то он подлежит проверке по методу эквивалентного момента.

Выбор мощности электродвигателя

Для обеспечения надежной и экономичной работы системы электропривода необходимо произвести выбор электродвигателя правильно. Электрическая машина должна иметь мощность, которая строго соответствует ожидаемой нагрузке, а также режиму работы электропривода. Электропривод довольно сильно распространен в промышленности, имеет большое множество условий работы и требований рабочих машин, что делает выбор мощности электродвигателя не легкой задачей.

Завышение мощности электрической машины не является выходом из ситуации. Это связано с тем, что помимо излишних экономических затрат на завышенную мощность вырастают и габариты электродвигателя, его масса, ухудшаются энергетические показатели системы (машина работает с пониженным КПД), а в случае асинхронных электродвигателей с низким коэффициентом мощности cosφ увеличивается потребление реактивной мощности, что в свою очередь создает дополнительные проблемы. Занижение мощности то же не выход, так как это приведет к повышению температуры изоляции обмоток, соответственно срок службы машины существенно снижается.

Даже если выбор электрической машины осуществлен правильно, то в процессе работы могут возникать кратковременные толчки нагрузки (резкое увеличение момента сопротивления), которые могут значительно превосходить номинальную мощность электромашины. Однако, каждый тип электрической машины имеет свои факторы электрического происхождения, которые даже при кратковременной перегрузке (если она превзойдет определенный предел) могут вызвать нарушение нормальной работы механизма. При выборе электродвигателя необходимо руководствоваться двумя основными факторами – мгновенной перегрузкой и нагревом.

Изолирующие материалы

Они определяют как и технико-экономические характеристики машины, так и ее надежность работы. Так как нагревостойкость изоляционных материалов относительно невелика, то ее нагрев ограничивает мощность электропривода. Технико-экономические соображения требуют, чтоб при нормальной эксплуатации срок службы изоляции составлял не менее 15-20 лет. По теплостойкости изоляции ее разделяют на:

В связи с тем, что условия работы электрических машин довольно разнообразны в отношении окружающей среды ГОСТ предлагает номинальные данные машины относить к тому случаю, когда температура окружающей среды равна 40 С 0 . Соответственно устанавливаются предельно допустимые значения перегрева над температурой окружающей среды для различных типов изоляции. Максимально допустимую температуру изоляции ϑизол можно представить как сумму температур окружающей среды и допустимого перегрева:

Где: ϑ – температура окружающей среды;

τиз – максимальный перегрев изоляции;

Как показывает практика – даже незначительный перегрев электродвигателя приводит к резкому сокращению срока его службы:

Как мы можем увидеть из графика, что для класса А повышение рабочей температуры с 95 0 до 105 0 снижает срок службы электромашины с 15 до 8 лет, что примерно в два раза.

При экспериментальном определении температуры обмоток используют несколько методов – метод термометра (пирометра), метод сопротивлений – при его использовании нагрев определяют по изменению омического сопротивления обмоток, а также метод температурных детекторов (термопары и прочие).

Результат, полученный в ходе измерений, будет довольно сильно зависеть от метода, который был выбран. Применение термометров (пирометров) довольно просто, при использовании дают довольно точный результат, но не позволяют измерять внутреннюю температуру обмоток. При использовании метода сопротивления – получим усредненный результат перегрева и не более. Температурные детекторы дают наиболее точный результат измерений, но только в местах их закладки.

Источник

Оцените статью
Adblock
detector