Перекос фаз в силовом трансформаторе

Перекос фаз в трехфазной сети — чем опасен и когда возникает?

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью. При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни. Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В). К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения. В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь. Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ. Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

Читайте также:  Запуск двигателя от трансформатора

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях. К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии. В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения — установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ) напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

Читайте также:  Трансформатор напряжения нами 110 ухл1 инструкция по эксплуатации

Источник

Устранение перекоса фаз: симметрирование или выравнивание фазных напряжений и нагрузок

Симметрирующие трансформаторы: нагрузка под контролем

Трехфазные симметрирующие трансформаторы

Устранение перекоса фаз (напряжений), перекоса фазных нагрузок, выравнивание (симметрирование) напряжений (фаз), равномерное распределение нагрузок по фазам питающей сети существенно снижает расход электроэнергии, топлива генератора, обеспечивает безотказную работу электроприемников.

Сущность явления перекоса фаз

Явление перекоса фаз известно практически всем, кто так или иначе сталкивается с проблемами, связанными с потреблением электроэнергии. Перекос фаз проявляется в трехфазных четырех- (пяти-) проводных сетях с глухозаземленной нейтралью напряжением до 1000 В.

В идеальном состоянии фазное напряжение (напряжение между каждой из трех фаз и нулевым рабочим проводником) составляет 220 В. Векторная диаграмма напряжений генератора (модель, отображающая взаимосвязь и взаиморасположение фазных и линейных напряжений) показана на рис. 1.

Линейные напряжения образуют равносторонний треугольник с вершинами UA, UB, UC. Фазные напряжения 0A, 0B и 0C равны между собой и сдвинуты друг относительно друга на угол 120°. Данная модель является идеальной и перекос фазных напряжений в ней отсутствует.

Рис. 1. Векторная диаграмма
напряжений генератора

При подключении нагрузки на разные фазы, которая всегда отличается и по величине, и по характеру — резистивная и реактивная (индуктивная и емкостная), в питающей сети возникает перекос фазных напряжений. Помимо вреда, который наносит электроэнергия низкого качества непосредственно электроприемникам, возникают уравнительные токи, вызывающие дополнительный расход электроэнергии, и, соответственно, топлива, масла, охлаждающей жидкости при питании от генератора.

Схема, иллюстрирующая условия возникновения перекоса фаз (напряжений) представлена на рис. 2, где RA, RB, RC — активные сопротивления нагрузок по фазам, причем RA > RB > RC ≠ 0.

Если бы сопротивления нагрузки были равны, то токи, через них протекающие так же были равны между собой. Учитывая то, что угол сдвига между ними равен 120°, то их геометрическая сумма равнялась бы нулю.

Однако при их неравенстве в результате суммирования возникает ток I00′, который называется уравнительным (см. рис. 2.). А, следовательно, напряжение U00′, которое называется напряжением смещения. Графически напряжение смещения показано на рис. 3. красной сплошной линией. Красным пунктиром обозначены фазные напряжения, сдвинутые друг относительно друга на произвольный угол и отображающие перекос фаз. Белым пунктиром показана идеальная ситуация без перекоса фазных напряжений.

Рис. 2 Схема, иллюстрирующая условия
возникновения перекоса фаз.

Чем больше уравнительный ток, тем больше Ваши потери электроэнергии. Чем больше напряжение смещения, тем выше риск повреждений, отключений, отказов, неустойчивой работы Ваших электроприемников, генератора электроэнергии, тем быстрее они изнашиваются, тем больше потребляют ресурсов.

Рис. 3. Напряжение смещения.

Последствия перекоса фаз

Последствия перекоса фаз проявляются в увеличении электропотребление из сети; в неправильной работе электроприемников, их сбоях, отказах, отключениях, перегорании предохранителей, износе изоляции. Для трехфазных автономных источников неравномерность загрузки их фаз чревата механическими повреждениями подшипников валов, подшипниковых щитов генератора и приводного двигателя, закоксовыванию форсунок.

Условно негативные последствия перекоса фаз можно разделить на три группы:

  1. последствия для электроприемников (приборов, оборудования), связанные с их повреждениями, отказами, увеличением износа, уменьшением периода эксплуатации;
  2. последствия для источников электроэнергии (увеличение износа, повреждения, увеличение энергопотребление при питании от госсети, повышенный расход топлива, масла, охлаждающей жидкости при питании от генератора, повреждения генератора, уменьшение периода его эксплуатации);
  3. последствия для потребителей, связанные с безопасностью, так как ухудшение качества изоляции может привести к:
    1. электротравматизму;
    2. возгоранию электропроводки или электроприемников;

а также последствия, связанные с увеличением расходов на:

  • электроэнергию;
  • расходные материалы для генератора;
  • ремонт электроприемников, поврежденных вследствие перекоса фаз;
  • приобретение новых электроприемников, отказавших вследствие перекоса фаз.

Традиционные способы решения проблем, связанных с электроэнергией низкого качества

Для обеспечения заданного напряжения на каждой из фаз традиционно используются стабилизаторы напряжения. В бытовых условиях применяют однофазные стабилизаторы напряжения, которые обеспечивают защиты отдельных электроприемников или небольшой их группы. В промышленных условиях используются трехфазные стабилизаторы напряжения различной мощности, которые конструктивно состоят из трех однофазных стабилизаторов напряжения.

Принцип их действия таков, что они реагируют на отклонения на каждой отдельно взятой фазе и поднимают или опускают напряжение до необходимого уровня на своей фазе, провоцируя изменения напряжений на двух других фазах и являясь, таким образом, вторичной причиной возникновения перекоса фаз.

Из изложенного выше ясно, что трехфазные стабилизаторы напряжения фактически не решают поставленную перед ними задачу, так как сами провоцируют несимметрию трехфазной системы. Помимо своего основного недостатка трехфазные стабилизаторы напряжения потребляют значительное количество электроэнергии и требуют значительных сервисных расходов, так как обладают низкой надежностью — и электромеханические, и электронные стабилизаторы напряжения имеют быстроизнашивающиеся и часто отказывающие детали.

Читайте также:  Технологическая карта по ремонту трансформатора 110 кв

Альтернативная технология симметрирования фаз по устранению перекоса фазных напряжений

Для решения задачи по устранению перекоса фазных напряжений и обеспечения заданного фазного напряжения необходимо использовать технологию, которая позволит выравнивать напряжение не на каждой из фаз по отдельности, а симметрировать фазы между собой, то есть симметрировать всю трехфазную систему. Такое устройство симметрирующий трансформатор обладает значительно большей эффективностью, оно не только само потребляет меньше электроэнергии, но и снижает электропотребление из сети для электроприемников.

Преимущества использования технологии симметрирования фаз:

  • снижение уровня энергопотребления из сети при сохранении нагрузки;
  • снижение расходов на электроэнергию для питания электроприемников;
  • снижение расходов электроэнергии и других ресурсов на обеспечение необходимой величины фазных напряжений;
  • снижение расходов на топливо, масло, охлаждающую жидкость при питании от генератора;
  • снижение расходов на генератор, так как технология позволяет использовать генератор меньшей мощности для той же группы приборов;
  • снижение расходов на ремонт, сервисное обслуживание, приобретение электроприемников, поврежденных вследствие перекоса фаз;
  • снижение расходов на ремонт, сервисное обслуживание, приобретение устройств, предназначенных для обеспечения заданной величины напряжения и обладающих низкой надежностью и низкой эффективностью (например, электромеханических и электронных трехфазных стабилизаторов напряжения).
  • обеспечение возможности подключать фазных потребителей мощностью до 50% трехфазной мощности.
  • Надежность электроприемников. Защита, обеспечение их устойчивой и безотказной работы.
  • Надежность устройства для симметрирования фазных нагрузок и устранения перекоса фазных напряжений. Принцип работы устройства основан на перемагничивании обмоток. Отсутствие подвижных и электронных частей делает устройство исключительно надежным, практически безотказным.
  • Надежность источника электроэнергии. Защита генератора от механических повреждений подшипников валов генератора и приводного двигателя вследствие перекоса фаз.
  • Защита от электротравматизма, возгорания электропроводки или электроприемников, вызванных износом изоляции вследствие перекоса фаз.
  • Обеспечения безопасности за счет применения защитной меры зануление.

Диапазон изменения фазных напряжений

Представленная технология допускает 100%-ый перекос нагрузки и устраняет перекос фазных напряжений во всем диапазоне их изменений независимо от причины перекоса: (1) перекос в подводящей питающей сети, вызванный неисправностями в распределительной сети, (2) неравномерное распределение фазных нагрузок, (3) подключение мощного потребителя, (4) комбинированные причины.

Рис. 4. Диапазон перекоса фазных напряжений.

Что дает технология симметрирования фаз

Устранение перекоса фазных напряжений, т.е. выравнивание фаз сети друг относительно друга.

  • Равномерное распределение нагрузок по фазам.
  • Обеспечение заданной величины линейных напряжений.
  • Обеспечение заданной величины фазных напряжений.
  • Преобразование трехфазной сети в одно-(двух) фазную:
    • с гальванической развязкой
    • без гальванической развязки питающей сети и потребителя;
    • с изменением (увеличением или уменьшением) выходного напряжения;
  • Преобразование трехфазной трехпроводной сети в трехфазную четырехпроводную (т.е. формирование нулевого рабочего проводника для возможности подключения фазной нагрузки).

Ниже на рисунках представлены варианты подключения нагрузки без использования представленной технологии и с использованием представленной технологии.

Рис. 5. Подключение нагрузки напрямую к сети.

Максимальная нагрузка на одну фазу составляет треть от трехфазной мощности источника электроэнергии.

Подключение мощного однофазного электроприемника вызывает перекос фаз и повышает риск его повреждений и повреждений других электроприемников. Если мощность такого фазного потребителя превышает треть трехфазной мощности, это вызывает его неправильную работу (сбой, отключение, отказ).

Рис. 6. Подключение более мощной нагрузки к тому же (см. рис. 4)
источнику электроэнергии с использованием представленной технологии.

Максимальная нагрузка на одну фазу может составлять 50% от трехфазной мощности источника электроэнергии. Источник электроэнергии воспринимает нагрузку как равномерно распределенную по фазам.

Рис. 7. Подключение той же нагрузки (см. рис. 4) к генератору
меньшей мощности с использованием представленной технологии.

Технологии симметрирования фаз позволяет подключать ту же группу электроприемников к генератору электроэнергии меньшей мощности, при этом источник электроэнергии будет воспринимать нагрузку как равномерно распределенную по фазам.

Представленная технология запатентована, не имеет аналогов в России и за рубежом. Оборудование, производимое на основе данной технологии, сертифицировано и соответствует ТУ.

Результат повышения энергоэффективности при массовом внедрении

Массовое внедрение симметрирующих трансформаторов позволит более рационально использовать электроэнергию, снизить ее потери; обеспечивать тех же потребителей (группы электроприемников) меньшим количеством электроэнергии; снизить затраты на электроэнергию, затраты на топливо, масло, охлаждающую жидкость при питании от генератора; продлить срок службы электроприемников, уменьшить их износ, обеспечить безотказную работу электроприемников; снизить расходы на источники электроэнергии, так как для той же группы электроприемников возможно использование генератора меньшей мощности.

Источник

Оцените статью
Adblock
detector