Почему внешняя характеристика трансформатора зависит от характера нагрузки

Основные характеристики трансформатора

Внешняя характеристика трансформатора

Известно, что напряжение на выводах вторичной обмотки трансформатора зависит от тока нагрузки, подключенной к этой обмотке. Данная зависимость называется внешней характеристикой трансформатора.

Внешняя характеристика трансформатора снимается при постоянном напряжении питания, когда с изменением нагрузки, по сути — с изменением тока нагрузки, изменяется и напряжение на выводах вторичной обмотки, т. е. вторичное напряжение трансформатора.

Это явление объясняется тем, что на сопротивлении вторичной обмотки, с изменением сопротивления нагрузки, изменяется и падение напряжения, и за счет изменения падения напряжения на сопротивлении первичной обмотки, изменяется соответственно и ЭДС вторичной обмотки.

Поскольку уравнение равновесия ЭДС в первичной обмотке содержит векторные величины, напряжение на вторичной обмотке зависит и от тока нагрузки, и от характера этой нагрузки: активная ли она, индуктивная или емкостная.

О характере нагрузки свидетельствует величина угла сдвига фаз между током через нагрузку и напряжением на нагрузке. В целом, можно ввести коэффициент нагрузки, который покажет то, во сколько раз ток нагрузки отличается от номинального для данного трансформатора:

Для точного расчета внешней характеристики трансформатора можно прибегнуть к схеме замещения, в которой, изменяя сопротивление нагрузки, фиксировать напряжение и ток вторичной обмотки.

Тем не менее, для практики полезной оказывается следующая формула, в которую подставляются напряжение холостого хода и «изменение вторичного напряжения», которое измеряется в процентах, и вычисляется как арифметическая разность между напряжением холостого хода и напряжением при данной нагрузке в процентах от напряжения холостого хода:

Выражение для нахождения «изменения вторичного напряжения» получают с определенными допущениями из схемы замещения трансформатора:

Здесь введены величины реактивной и активной составляющей напряжения короткого замыкания. Данные составляющие напряжения (активная и реактивная) находятся через параметры схемы замещения, либо находятся экспериментальным путем в опыте короткого замыкания.

Опыт короткого замыкания позволяет многое узнать о трансформаторе. Напряжение короткого замыкания находят как отношение напряжения короткого замыкания в эксперименте к номинальному первичному напряжению. Параметр «напряжение короткого замыкания» указывается в процентах.

В ходе эксперимента у трансформатора накоротко замыкают вторичную обмотку, при этом на первичную подают напряжение значительно ниже номинального, чтобы ток короткого замыкания оказался бы равным номиналу. Здесь напряжение питания уравновесится падениями напряжения на обмотках, и величину подводимого пониженного напряжения рассматривают как эквивалентное падение напряжения на обмотках при токе нагрузки равном номиналу.

Для маломощных трансформаторов питания и для силовых трансформаторов величина напряжения короткого замыкания лежит в пределах от 5% до 15%, и чем мощнее трансформатор — тем меньше эта величина. Точное значение напряжения короткого замыкания приводится в технической документации на конкретный трансформатор.

На рисунке приведены внешние характеристики, построенные в соответствии с приведенными выше формулами. Видим, что графики линейны, это потому, что вторичное напряжение не сильно зависит от коэффициента нагрузки в силу относительно малого сопротивления провода обмоток, а рабочий магнитный поток мало зависит от нагрузки.

Читайте также:  Трещит трансформатор для светодиодной ленты

На рисунке видно, что угол сдвига фаз в зависимости от характера нагрузки влияет на то, падающей или возрастающей получается характеристика. При нагрузке активной или активно-индуктивной — характеристика падающая, при активно-емкостной — может быть возрастающей, и тогда второй член в формуле для «изменения напряжения» становится отрицательным.

Для маломощных трансформаторов на активной составляющей обычно падает больше, чем на индуктивной, поэтому внешняя характеристика при активной нагрузке менее линейная, чем при нагрузке активно-индуктивного характера. Для более мощных трансформаторов — все наоборот, поэтому и характеристика для нагрузки активного характера окажется более жесткой.

Коэффициентом полезного действия трансформатора называется отношение отдаваемой в нагрузку полезной электрической мощности к потребляемой трансформатором активной электрической мощности:

Потребляемая трансформатором мощность складывается из мощности потребляемой нагрузкой и мощности потерь непосредственно в трансформаторе. При том активная мощность соотносится с полной мощностью следующим образом:

Так как на выходе трансформатора напряжение в целом слабо зависит от нагрузки, то коэффициент нагрузки может быть связан с номинальной полной мощностью так:

И мощность, потребляемая нагрузкой во вторичной цепи:

Электрические потери в нагрузке произвольной величины могут быть выражены с учетом потерь при номинальной нагрузке через коэффициент нагрузки:

Потери при номинальной нагрузке достаточно точно определяются мощностью, которую трансформатор потребляет в эксперименте короткого замыкания, а потери магнитного характера равны мощности, потребляемой трансформатором на холостом ходу. Эти составляющие потерь приводятся в документации на трансформаторы. Так, если учесть приведенные факты, формула для КПД примет следующий вид:

На рисунке приведены зависимости КПД трансформатора от нагрузки. При нагрузке равной нулю — КПД равен нулю.

С ростом коэффициента нагрузки возрастает и отдаваемая в нагрузку мощность, причем магнитные потери неизменны, и КПД, легко видеть, линейно растет. Далее наступает оптимальное значение коэффициента нагрузки, при котором КПД достигает своего предела, в этой точке получается максимальный КПД.

После прохождения оптимального коэффициента нагрузки КПД начинает постепенно снижаться. Это происходит потому, что растут электрические потери, они пропорциональны квадрату тока и, соответственно, квадрату коэффициента нагрузки. Максимум КПД для мощных трансформаторов (мощность измеряется в единицах и более КВА) лежит в пределах от 98% до 99%, у маломощных (менее 10 ВА) — КПД может быть около 60%.

Как правило, трансформаторы еще на стадии проектирования стараются сделать такими, чтобы КПД достигал максимального значения при оптимальном коэффициенте нагрузки от 0,5 до 0,7, тогда при реальном коэффициенте нагрузки от 0,5 до 1, КПД окажется близок к своему максимуму. С уменьшением коэффициента мощности (косинуса фи) нагрузки, присоединенной ко вторичной обмотке, уменьшается и отдаваемая мощность, причем электрические и магнитные потери остаются неизменными, следовательно КПД в этом случае падает.

Читайте также:  Контрольная работа по физике 11 класс переменный ток трансформатор

Оптимальный режим работы трансформатора, т. е. его номинальный режим, обычно устанавливают по условиям безаварийной работы и по уровню допустимого нагрева за время определенного эксплуатационного периода. Это крайне важное условие, чтобы трансформатор отдавая номинальную мощность, работая в номинальном режиме, не перегревался бы сверх меры.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Внешняя характеристика трансформатора

Свойства трансформатора в рабочем режиме характеризуется зависимостью вторичного напряжения от нагрузки и коэффициентом полезного действия (КПД).

Зависимость вторичного напряжения трансформатора от его нагрузки при постоянном номинальном напряжении первичной обмотки называется внешней (нагрузочной) характеристикой.

При изменении нагрузки изменяется ток и мощность, отдаваемая нагрузке, . Такое изменение удобно оценивать, введя понятие коэффициента нагрузки

(28)

Тогда внешняя характеристика это зависимость вторичного напряжения трансформатора от коэффициента нагрузки, то есть,

при .

Вид внешней характеристики зависит от характера нагрузки, то есть от коэффициента нагрузки ( ) и знака угла нагрузки ( ). При активной или активно-индуктивной нагрузке вторичное напряжение уменьшается с ростом нагрузки, а при активно-емкостной – увеличивается (рис. 10). Отметим, что вторичное напряжение при отсутствии нагрузки соответствует режиму холостого хода, то есть, является номинальным напряжением вторичной обмотки.

Рис. 10. Внешняя характеристика трансформатора

Характеристика 1 – соответствует емкостной нагрузке трансформатора ( ).

Характеристика 2 – соответствует активной нагрузке трансформатора ( ).

Характеристика 3 – соответствует индуктивной нагрузке трансформатора ( ).

Обычно вторичное напряжение оценивают не по значению напряжения, а по отклонению напряжения от номинального значения . Оно называется изменением вторичного напряжения и выражается в % от номинального.

(29)

– текущее значение напряжения на вторичной обмотке.

Можно доказать, что изменение напряжения может быть выражено:

(30)

Проведем несложные преобразования, учитывая, что

Получаем выражение для определения процентного отклонения вторичного напряжения:

(31)

где – угол нагрузки, равный

Тогда, зная изменение напряжения и номинальные данные трансформатора, можно всегда рассчитать значение вторичного напряжения:

(32)

Из выражений (31) и (32) вытекает линейная зависимость вторичного напряжения от коэффициента нагрузки, а также и становится понятным, почему так выглядит внешняя характеристика трансформатора при разной нагрузке (рис. 10).

Внешняя характеристика трансформатора играет важную роль при выборе режима работы трансформатора в конкретных условиях, а также для выбора самого трансформатора.

Обычно при неизменном первичном напряжении U1 колебания нагрузки трансформатора вызывают сравнительно малое изменение вторичного напряжения U2. Однако в условиях эксплуатации электроустановок часто возникает необходимость поддерживать постоянным вторичное напряжение или изменять его в определенных пределах. Для решения этой задачи изменяют ЭДС вторичной обмотки, действующее значение которой

Читайте также:  Трансформатор 320 220 в

ЭДС обмотки можно изменить путем изменения числа ее витков или магнитного потока. Наибольшее распространение получило регулирование напряжения посредством изменения числа витков. Для этого обмотки выполняют с несколькими ответвлениями, каждое из которых соответствует определенному числу витков. При переключении обмоток напряжение изменяется ступенями. Обмотки ВН трансформаторов обычно имеют пять ответвлений, которые позволяют изменять вторичное напряжение на ±2,5% и 5% от номинального. При изменении числа витков первичной обмотки магнитный поток в магнитопроводе будет изменяться.

Регулировочные ответвления могут быть сделаны как на первичной, так и на вторичной обмотках. Если трансформатор работает в условиях постоянства первичного напряжения, регулировочные ответвления целесообразно делать на вторичной обмотке. Если же первичное напряжение изменяется, регулировочные ответвления целесообразно делать на первичной обмотке, чтобы при изменениях первичного напряжения отношение оставалось бы неизменным. В этом случае магнитный поток в магнитопроводе трансформатора будет оставаться неизменным, не увеличивая потерь в стали и намагничивающего тока. При этом соотношение потерь в стали и меди остается неизменным и обеспечивается наиболее выгодный КПД трансформатора.

Понижающие силовые трансформаторы большей частью работают в условиях изменения первичного напряжения и регулировочные ответвления делаются у обмотки ВН. По конструктивным соображениям регулировочные ответвления целесообразно делать у обмотки ВН, так как в этом случае переключатели должны быть рассчитаны на меньший ток. Так как при регулировании напряжения отключается часть витков только одной обмотки, то при этом нарушается симметричное расположение действующих витков одной обмотки относительно другой. Это приводит к дополнительному магнитному рассеянию и потерям. При аварийных режимах (короткое замыкание) возникают механические усилия, которые могут достигать опасной для обмоток величины. Поэтому необходимо обеспечить достаточную механическую прочность обмоток. При отключении части витков в середине обмотки механическая прочность обмотки снижается в меньшей степени, чем при отключении части витков у конца обмотки, поэтому в обмотках трансформаторов ответвления располагают в средней части обмотки. Переключение с одного ответвления на другое производят только после отключения трансформатора от первичной и вторичной сетей, чтобы избежать возможных коротких замыканий регулировочных витков обмотки и разрыва цепи обмотки под нагрузкой. Переключение осуществляют поворотом рукоятки переключателя, расположенной на крышке бака трансформатора.

Существуют также схемы регулирования напряжения без отключения трансформатора от сети. В таких трансформаторах реагирование напряжения производится под нагрузкой (РПН). Для ограничения токов коротких замыканий в регулируемых витках в процессе переключения эти витки замыкаются на относительно большое индуктивное или активное сопротивление.

Источник

Оцените статью
Adblock
detector