Потери в стали сердечника трансформаторов

Потери в стали сердечника трансформаторов

Из большого разнообразия электротехнических сталей, выпускаемых в СССР согласно ГОСТ 802-58, для производства силовых трансформаторов стандартной частоты применяют горячекатаную сталь марок Э41, Э42 и Э43 и холоднокатаную текстурованную сталь марок Э310, Э320, ЭЗЗО и ЭЗЗОА. В обозначении марки стали буква Э означает «электротехническая», первая цифра указывает процент содержания кремния (4% у горячекатаной и 3% у холоднокатаной стали), вторая цифра характеризует качество стали в отношении удельных потерь (1 — нормальные, 2 — пониженные, 3 — низкие, ЗА — особо низкие удельные потерн), О — указывает на то, что сталь холоднокатаная.

Сталь выпускается листами, размеры которых 750 мм X XI500 мм и 1000 мм Х2000 мм при толщине 0,5 мм и 0,35 мм. По требованию заказчика холоднокатаная сталь поставляется в рулонах той же ширины, что и листы стали. Выпускаемая холоднокатаная текстурованная сталь обладает значительно большей анизотропией в отношении магнитной проницаемости и потерь вдоль и поперек прокатки, чем горячекатаная сталь. Холоднокатаная сталь после нарезки листов и штамповки должна быть отожжена для снятия наклепа. Это значительно улучшает ее электромагнитные свойства. При проверке свойств стали ГОСТ 802-58 рекомендует испытывать холоднокатаную сталь после отжига. Если же после нарезки листов они не были отожжены, то для сравнения с гарантированными значениями результат испытания в отношении потерь в стали должен быть уменьшен на 10%.

Характеристики стали перечисленных марок даны в табл. 1-1.

Электромагнитные характеристики трансформаторных сталей (ГОСТ 802-58)

Для возможности вычисления потерь в стали при частотах, отличных от стандартной, а также при несинусоидальном напряжении, приложенном к зажимам трансформатора, полезно отдельно рассмотреть составляющие потерь в стали, а именно, потери на гистерезис и потери от вихревых токов. Удельные потери в стали в вт/кг при синусоидальной форме кривой приложенного напряжения и отсутствии размагничивающего действия вихревых токов в стали, т. е. при равномерном распределении индукции по поперечному сечению листа стали, могут быть вычислены по формуле Штейнмеца:

где первое слагаемое представляет собой потери на гистерезис, а второе — потери от вихревых токов. В этой формуле f — частота приложенного напряжения; Вт — амплитуда магнитной индукции; t-толщина листов стали. Показатель степени п для современных сталей лежит в пределах 2-2,5. Коэффициенты R1, н R2 зависят от свойств стали и могут быть найдены опытным путем.

Удельные потери на гистерезис пропорциональны площади гистерезисной петли.

Удельные потери от вихревых токов могут быть найдены (52] путем расчета по формуле:

где kf — коэффициент формы кривой, . Y и б-электрическая проводимость и удельный вес стали; f — частота; Вт — амплитуда магнитной индукции в стали; t — толщина листа стали.

Известно, что полные удельные потери в стали, определенные опытным путем, больше суммы потерь на гистерезис и потерь па вихревые токи, подсчитанных по формуле (1-3), т. е.

где Pд — добавочные потери, которые для различных марок электротехнической стали составляют от 10 до 50% полных потерь. Обычно считают, что добавочные потери в стали относятся к увеличенным потерям от вихревых токов, получающимся вследствие неравномерной намагниченности стали и появления нормальной составляющей намагниченности, не учитываемой формулой (1-3).

Снижение полных потерь в стали достигается путем уменьшения вредных в магнитном отношении примесей и путем получения крупнозернистой структуры, а в холоднокатаной стали также за счет резко выраженной кристаллографической структуры. Поэтому уменьшение общих потерь в стали происходит за счет уменьшения потерь на гистерезис, причем потери на вихревые токи могут даже возрасти.

В табл. 1-2 приведены значения удельных потерь для некоторых марок стали при индукции Вт = 1 тл, полученные опытным путем [15].

Удельные потери на гистерезис и вихревые токи в трансформаторной стали

Источник

КПД трансформатора

КПД трансформатора всегда будет меньше 100% т.к. в каждом трансформаторе всегда имеются потери электрической энергии, вследствие чего из первичной обмотки во вторичную передаётся не вся энергия, а лишь бОльшая её часть.

Различают два вида потерь в трансформаторе — потери в меди (в проводах, которыми он намотан) и потери в стали (в сердечнике).

Потери в меди обуславливаются наличием в проводах обмоток трансформатора электрического сопротивления. Ток, протекающий в обмотке, создаёт на таком проводнике падение напряжения. На обмотке развивается некоторая электрическая мощность и часть энергии преобразуется в тепло, нагревающее обмотку.

Потери в стали

Потери в стали состоят из двух видов потерь:

  • потери из-за вихревых токов;
  • потери на циклическое перемагничивание.

Возникновение вихревых токов в сердечнике можно объяснить следующим образом. Сердечник, изготовленный из стали, представляет собой металлический проводник, помещённый в переменное магнитное поле. В сердечнике так же, как и в витках любой обмотки, будет создаваться индуктированная Э.Д.С., и по сердечнику будет протекать ток. Так как сечение сердечника велико, то его электрическое сопротивление мало. Поэтому токи, протекающие в сердечнике, достигают больших величин. При этом происходит активное расходование энергии и преобразование её в тепло, которое нагревает сердечник.

Величина потерь второго вида, т.е. потерь, возникающих при циклическом перемагничивании, сильно зависят от материала сердечника. Материал сердечника можно представить как бы состоящим из большого числа элементарных магнитиков (магнитных диполей), которые в обычном состоянии расположены хаотически. При внесении такого материала в магнитное поле магнитные диполи начинают поворачиваться в направлении действия магнитного поля. Если магнитное поле переменное, то диполи будут периодически поворачиваться сначала в одну, а потом в другую сторону с частотой изменения данного поля. При этом возникают силы трения и энергия магнитного поля также переходит в тепло, нагревающее сердечник.

Читайте также:  Маслосборник трансформатора расценка в смете

Для увеличения КПД трансформатора нужно уменьшить все виды потерь. Потери в меди можно уменьшить путём увеличения сечения проводов обмоток. Однако при этом значительно увеличатся размеры, вес и стоимость трансформатора. Поэтому увеличение сечения проводов производится лишь до такой величины, при которой не наблюдается заметного нагрева обмоток. Потери на перемагничивание значительно уменьшаются, если в качестве материала сердечника трансформаторов применить специальную магнитомягкую сталь, имеющую определённый состав и структуру.

Наконец, для уменьшения потерь на вихревые токи сердечник собирается не из монолитных стальных брусков, а из отдельных изолированных друг от друга пластин толщиной в несколько десятых долей миллиметра. Кроме того, в состав материала сердечника вводится в качестве присадки кремний. И то и другое способствует увеличению электрического сопротивления сердечника, которое, в свою очередь, влечёт за собой уменьшение величины вихревых токов.

В результате всех этих мер КПД трансформатора обычно равен 85-90%.

Источник

Потери в магнитопроводе

Потери в магнитопроводе возникают при воздействии на него переменного магнитного поля. Потери энергии зависят от частоты этого поля. Потери в магнитопроводе бывают статическими (при перемагничивании материала) и динамическими (из-за протекания тока по магнитному материалу).

Статические потери энергии вызываются перемагничиванием магнитопровода. Магнитный поток, проходя по сердечнику катушки индуктивности или трансформатора разворачивает все домены то по направлению магнитного поля, то в противоположном направлении, при этом поле совершает работу: раздвигается кристаллическая решётка, при этом выделяется тепло и магнитный сердечник разогревается. Статические потери пропорциональны площади петли гистерезиса магнитного материала, подаваемой частоте и весу сердечника:

Статические потери по другому называются потери на гистерезис. Чем уже петля гистерезиса, тем меньше статические потери. При уменьшении толщины стальной ленты магнитопровода возрастает Нс, увеличивается площадь петли гистерезиса, и статические потери возрастают. При увеличении частоты магнитного поля уменьшается μа, что тоже приводит к возрастанию потерь на гистерезис.

Динамические потери — это потери энергии в магнитопроводе из-за вихревых токов. График петли гистерезиса, снятый на постоянном токе () называется статической петлей гистерезиса. С увеличением частоты fc на этот график начинают оказывать действие вихревые токи.

Ферромагнетик (сталь) — хороший электропроводник, поэтому магнитный поток, проходя по сердечнику наводит в нём токи, которые охватывают каждую магнитную силовую линию. Эти токи создают свои магнитные потоки, направленные навстречу основному магнитному потоку. Результат сложения наведённых токов в толще магнитопровода такой, что суммарный ток как бы вытесняется к краям массивного магнитопровода, как это показано на рисунке 1.


Рисунок 1. Вихревые токи в ферромагнетике

Между силовыми линиями токи компенсируются и, в результате, ток протекает только по периметру. Сталь имеет малое омическое сопротивление, поэтому ток достигает значений сотен и тысяч ампер, вызывая разогрев магнитопровода. Для уменьшения вихревых токов необходимо увеличить омическое сопротивление, что достигается набором сердечника из изолированных пластин. Чем тоньше пластина (лента), тем выше её сопротивление и меньше вихревые токи. В зависимости от рабочей частоты толщина (Δ) пластин (ленты) различна. В таблице 1 приведена зависимость толщины пластин от частоты сети

Таблица 1. Толщина пластин в зависимости от частоты сети

Частота сети fc (Гц) Толщина пластин Δ (мм)
50 . 60 0,5 . 0,35
400 0,2 . 0,1
20000 0,05 . 0,003

Потери на вихревые токи пропорциональны квадрату частоты, квадрату толщины и весу сердечника . Поэтому на высоких частотах используются очень тонкие материалы. Наименьшими потерями обладают ферриты — порошок ферромагнетика спекаемый при высокой температуре. Каждая крупинка изолирована окислом, поэтому вихревые токи очень малы. Последняя строка таблицы 1 соответствует именно такому варианту изготовления магнитного сердечника.

Общие потери в магнитопроводе (РМАГ) равны сумме статических и динамических потерь:

В справочниках на магнитные материалы потери Рг и Рв не разделяют, а приводят суммарные потери на 1 кг материала — Руд [Bт/кг]. Итоговые потери находят простым умножением удельных потерь на вес сердечника

Поскольку потери являются многопараметрической величиной, то в справочниках приводятся таблицы или графические зависимости удельных потерь от того или иного параметра. Например, на рисунке 2 показаны зависимости потерь от индукции для стали толщиной на частоте для разного типа проката.


Рисунок 2. Зависимость потерь в электротехнической стали от индукции

Для других частот такие зависимости будут иными. Если режим эксплуатации магнитопровода не соответствует режиму измерения потерь, то потери можно пересчитать на требуемый режим по эмпирической, но вполне пригодной формуле:

В таблице 2 приведены примерные удельные потери некоторых ферромагнитных материалов, применяемых в магнитопроводах трансформаторов и катушек индуктивности.

Таблица 2. Удельные потери некоторых ферромагнитных материалов

Марка Частота, кГц Руд, Вт/кг Толщина, мкм
3414 0,4 . 20 22 ± 2 80
50НП 0,4 . 20 14 ± 2 50
50НП 1 5 20
80НХС 1 1,5 10
79НМ 1 1,5 10
М2000 НМ-А 0,4 . 100 32 ± 7
М2000 НМ-А 100 . 1000 13 ± 3
М2000 НМ1-17 0,4 . 100 63 ± 10
М2000 НМ1-17 100 . 1000 25 ± 4
М3000 НМА 0,4 . 200 48 ± 8
М10000 НМ1 0,4 . 100 5,2 ± 1

Видно, что потери в пермаллое зависят от толщины ленты. Потери в ферритах на высокой частоте меньше, чем на низкой частоте из-за снижения потерь на гистерезис. Обычно вопрос о выборе материала для сердечника решается с позиции наименьших потерь мощности.

Читайте также:  Какими требованиями необходимо руководствоваться при использовании разделительного трансформатора

Дата последнего обновления файла 16.05.2021

Понравился материал? Поделись с друзьями!

Вместе со статьей «Потери в магнитопроводе» читают:

Источник

ElectronicsBlog

Обучающие статьи по электронике

Потери мощности в трансформаторе

Всем доброго времени суток! В прошлой статье я рассказал об эквивалентной схеме трансформатора. В данной статье я расскажу, как рассчитать потери мощности в трансформаторе. От потерь мощности в трансформаторе зависит температура его нагрева, поэтому они значительно влияют на расчётные параметры. При расчёте трансформатора следует ограничивать потери мощности путем правильного выбора параметров и величин, влияющих на потери.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Составляющие потерь мощности в трансформаторе

Полные или суммарные потери мощности в трансформаторе ∆р состоят в основном из двух частей: потерь в сердечнике ∆рс и потерь в катушках ∆рк. Присутствующие потери мощности в элементах конструкций трансформатора имеют достаточно малое значение и обычно не учитываются.

При расчёте трансформатора, кроме вышеназванных величин, важное значение имеет соотношение потерь мощности ν и отношение суммарных потерь мощности ∆р к выходной мощности Р2, называемое коэффициентом потерь kпот

Довольно часто потери мощности ∆рс и ∆рк называют потерями «в стали» и потерями «в меди», однако это не совсем правильно, так как в качестве материала сердечника используются не только стали, но и различные сплавов, а в качестве материала проводов обмоток – не только медные, но и алюминий.

Потери мощности в катушках ∆рк, кроме основной части – потерь в обмотках – включает в себя потери в диэлектрике: изоляции проводника, межслоевой и межобмоточной ∆рд. Однако, данный компонент потерь мощности начинает влиять на общие потери, только у высоковольтных высокочастотных трансформаторов. Рассмотрим составляющие потерь мощности трансформатора.

Потери мощности в сердечнике трансформатора

В сердечнике ∆рс трансформатора потери мощности обусловлены затратами энергии магнитного поля на перемагничивание материала из которого сделан сердечник.

Энергия магнитного поля в общем случае определяется следующим выражением

где EC(t) – изменение напряжения за один период,

i(t) – изменение тока за один период.

В соответствие с законом электромагнитной индукции и теоремой о циркуляции вектора напряженности магнитного поля получим

где S – площадь поперечного сечения магнитопровода,

lcp – средняя длина магнитной силовой линии.

Так как ферромагнитные сердечники обладают гистерезисом, то однозначной функциональной зависимости между напряженностью Н и индукцией В магнитного поля в нем не существует. Однако при перемагничивании сердечника от –Нmax до Нmax можно считать, что любой величине напряженности магнитного поля Н соответствует только два значения магнитной индукции В: на восходящей и нисходящей ветвях. То есть, после полного цикла перемагничивания ферромагнетик вернётся в тоже состояние, из которого начинался процесс. Тогда подынтегральное выражение имеет физический смысл теплоты, отданной сердечником за один цикл перемегничивания.


Физический смысл магнитных потерь в сердечнике.

Так как потери мощности в сердечнике ∆рс определяется, как работа за единицу времени, то преобразовав предыдущую формулу, получим выражение для вычисления потерь мощности в сердечнике

где f – частота перемагничивания магнитопровода.

Подынтегральное выражение численно равно площади заштрихованного участка петли гистерезиса. Таким образом, вычисление данного интеграла является вычислением удельных потерь.

На практике нет необходимости в вычислении удельных потерь, так как для разработанных ферромагнитных материалов существуют справочные данные. Поэтому используют различные формулы в зависимости от известных справочных данных.

Достаточно широко распространено следующее выражение для высокочастотных материалов, где удельные потери имеют размерность Вт/(см 3 Гц)

PSV – удельные объемные потери в магнитопроводе,

Ve – эквивалентный объем сердечника магнитопровода,

f – частота перемагничивания.

Так для отечественных ферритов значение удельных объемных потерь составляют

Марка феррита PSV, мкВт/(см 3 *Гц), на частоте 10-20кГц При индукции В, Тл
Т, °С
+25 +100 +120
2500НМС1 10,5 8,7 0,2
2500НМС2 8,5 6 0,2
2500НМС5 9,0 7,6 0,2 (при 100 кГц)
3000НМС 2,5 2,5 0,1

Кроме данного выражения существуют более сложные способы вычисления потерь мощности в сердечнике трансформатора. Часто в справочниках приводятся удельные объемные потери PSV в Вт/см 3 или удельные массовые потери PSM в Вт/кг. В этом случае потери мощности рассчитываются по следующим выражениям

где ρ – плотность материала,

f1, B1 – базовые расчётные параметры, при которых были измерены потери мощности в сердечнике,

α и β – степенные параметры, зависящие от конкретного материала, их значение можно найти в справочниках.

Материал PSV Вт/см 3 α β
2000НМ-А 0,142 1,2 2,4
2000НМ-17 0,272 1,2 2,8
3000НМ-А 0,208 1,2 2,8
1500НМ3 0,093 1,2 2,2
2000НМ3 0,178 1,3 2,7

Для данных материалов В1 = 1 Тл, f1 = 1 кГц.

Материал Толщина, мм PSM, Вт/кг α β
34НКМП 0,1 2,2 1,65 1,7
40НКМП 0,05 2,8 1,5 1,3
50НП 0,1 5 1,4 1,5
79НМ 0,1 1,4 1,65 2,0
68НМП 0,05 2,2 1,55 1,7
80НХС 0,05 1,2 1,5 2,0

Для данных материалов В1 = 0,5 Тл, f1 = 1 кГц.

Для ферритов иностранного производства выпускаются довольно подробные справочные материалы. Для расчета потерь в сердечниках из этих ферритов используется коэффициент удельных объемных потерь PV (Relative core losses) измеряемый в кВт/м 3 . Для этого параметра приводятся подробные графические зависимости от частоты f, магнитной индукции В и температуры Т.


Зависимость удельных потерь PV для феррита N72 от различных параметров.

Поэтому для нахождения потерь мощности для сердечников из таких материалов достаточно воспользоваться следующим выражением

где PV – удельные объемные потери в конкретных условиях,

Ve – эффективный объем сердечника.

Как рассчитать потери мощности в наборных сердечниках?

Удельные потери магнитного материала в наборных сердечниках превышают аналогичные у прессованных. Причиной увеличения потерь является негативное влияние технологических операций при изготовлении сердечников. Для учета данного влияния вводят коэффициент увеличения потерь kp:

Читайте также:  Трансформатор тмн 6300 110 расшифровка

где Рсн – удельные потери мощности в наборном (ленточном или шихтованном) сердечнике,

РV / – удельные потери материала, из которого изготовлены пластины или ленты сердечника,

kp – коэффициент увеличения потерь.

Значения данного коэффициента зависят от технологии изготовления, вида материала, рабочей частоты и вида сердечника. Так для наборных сердечников (ЛС и ШС) из электротехнической стали определяется следующим выражением

А для разрезных ленточных сердечников из железоникелевых сплавов

где ψа – параметр учитывающий тип сердечника. Для разъёмных сердечников (СТ, БТ) ψа = 3, а для замкнутых (ТТ) составляет ψа = 1.

В таблице ниже приведены типовые значения коэффициента увеличения потерь

Тип сердечника Материал Значения kp при частоте в Гц
Вид Толщина 50 400 2000 10000
ШС и замкнутые ЛС Стали и сплавы 0,15-0,35 1,15 1,2 1,25 1,3
0,05 1,25 1,35 1,4
Разрезные ЛС Эл. тех. стали 0,15-0,35 1,3 1,4 1,5 1,6
0,05 1,5 1,6 1,7
50Н, 33НКМС 0,05-0,1 1,7 1,8 1,9
80НХС, 79НМ 0,05-0,1 2,5 2,8 3

Значение коэффициента добавочных потерь kp даны для сердечников средних размеров (несколько десятков Вт). Для сердечников меньших размеров значение данного коэффициента необходимо увеличить в 1,2 – 1,3 раза, а для больших сердечников уменьшить в 1,2 – 1,3 раза.

Как рассчитать потери мощности в обмотках трансформатора?

Потери мощности в обмотках трансформатора ∆рк напрямую зависят от их активного сопротивления Ri. Кроме того необходимо учитывать увеличение сопротивления из-за дополнительных факторов (увеличение температуры и скин-эффект). В общем случае потери мощности в обмотках определяются следующим выражением

где N – количество вторичных обмоток,

Ii – сила тока в i-й обмотке,

Ri – сопротивление i-й обмотки.

Сопротивление обмотки рассчитывается по известной формуле, через удельное сопротивление

где lw – средняя длина витка обмотки, см,

q – сечение проводника, мм 2 ,

ρ – удельное сопротивление материала проводника, Ом*мм 2 /м.

Данное выражение достаточно неудобно использовать на практике. Чаще всего известны размеры сердечника, а также его основные параметры (площади и объёмы). Поэтому можно использовать следующее выражение для потерь мощности в обмотках трансформатора

где koki – коэффициент заполнения окна для i-й обмотки,

Vki – геометрический объем, занятый i-й обмоткой, см 3 ,

ji – плотность тока для i-й обмотки, а/мм 2 ,

Soki – площадь сечения i-й обмотки, мм 2 ,

Если параметры ρ, j, kok одинаковы для всех обмоток либо взяты их средние значения, то получим следующее выражение

где Vk – геометрический объем, занятый всей катушкой, см 3 .

Как уже было сказано, при работе трансформатор нагревается. Вместе с этим изменяется активное сопротивление обмоток. Рассчитать удельное сопротивление проводника при увеличении температуры можно по следующим выражениям

где kτ — коэффициент учитывающий увеличение сопротивления из-за роста температуры,

ρ20 – удельное сопротивление проводника при температуре 20°С,

αρ – температурный коэффициент сопротивления, для меди и алюминия αρ = 0,004 1/°С,

tp – рабочая температура трансформатора, °С.

Так как в большинстве случаев в справочниках указывают удельное сопротивление материалов при температуре 20°С, то выражение можно упростить

где τ – перегрев трансформатора.

Влияние температуры на сопротивление обмотки трансформатора необходимо всегда учитывать при расчете падения напряжения на них.

Как влияет переменное напряжение на потери мощности в обмотках?

При протекании переменного электрического тока по проводнику возбуждаются вихревые токи или токи Фуко. Они направленны так, что ослабляют ток внутри провода и усиливают вблизи поверхности. В результате переменный ток оказывается неравномерно распределённым по сечению провода – он как бы вытесняется на поверхность проводника. Данное явление называется скин-эффектом или поверхностным эффектом.

Вследствие этого эффекта плотность тока у поверхности проводника максимальна, а на глубине ∆ становится меньше в е раз (примерно на 70%). Глубину скин-слоя можно определить по следующему выражению

где ρ – удельное сопротивление проводника, для меди ρ = 0,0172 Ом*мм 2 /м,

μα — абсолютная магнитная проницаемость проводника, для меди μα = 4*π*10 -7 Гн/м,

μ0 — относительная магнитная проницаемость проводника, для меди μ0 ≈ 1,

f – частота переменного тока.

Кроме скин-эффекта в проводниках, в обмотках трансформатора, проявляется так называемый катушечный эффект и эффект близости проводников, заключающегося в том что переменное напряжение за счет токов Фуко вытесняется во внешнюю часть обмотки. Данные эффекты также увеличивают сопротивление обмотки трансформатора. Для учета данный факторов вводят поправочный коэффициент kf

где m – число слоёв в обмотке.

Для определения коэффициентов M и D необходимо воспользоваться следующими выражениями

где χ – высота одного слоя обмотки, отнесённая к глубине скин-слоя,

sinh и cosh – гиперболические синус и косинус, соответственно.

Высота проводника h не эквивалентна его диаметру d. Только если производится намотка фольгой, параметр высота проводника h равен толщине фольги, в случае круглого провода высота проводника h равна

где d – диаметр проводника,

р – расстояние между центрами соседних проводников.

При использовании многожильного обмоточного провода (литцендрата), выражение для поправочного коэффициента kf будет иметь следующий вид

где mР – приведённое количество слоев обмотки,

m – реальное количество слоев обмотки,

n – количество элементарных жил в «литцендрате».

Кроме рассмотренных потерь при высокочастотном напряжении в обмотках, необходимо учитывать, что из-за наличия зазоров в сердечнике происходит искривление магнитного поля, что вызывает дополнительные вихревые токи в проводниках

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник

Оцените статью
Adblock
detector