Преобразование треугольника в звезду для напряжений

Преобразование треугольника сопротивлений в эквивалентную звезду и обратно

Преобразование треугольника сопротивлений в эквивалентную звезду

Иногда для облегчения расчетов применяют преобразование треугольника сопротивлений в эквивалентную звезду.

Треугольник сопротивлений представляет собой треугольник сторонами которого является сопротивления (рис. 1).

Преобразование треугольника в звезду значительно упрощает схему рис.2 а — до преобразования, б — после.

Итак начнём преобразование:

  1. Для удобства обозначим узлы (углы) треугольника буквами A, B, C.
  2. Найдём сопротивления лучей звезды по формулам. Сумма сопротивлений ветвей выходящих из узла (угла треугольника) делённая на сумму всехсопротивлений треугольника.
  3. Начертим новую схему с преобразованным треугольником в звезду. (Рисунок 2,б)

Преобразование звезды сопротивлений в эквивалентный треугольник

В расчетах также возникает потребность обратной операции, то есть

преобразование звезды в треугольник. В задании нам известны сопротивление лучей звезды, и нам нужно рассчитать сопротивления сторон треугольника. По формуле — сопротивление стороны треугольника равно сумме сопротивлений лучей звезды прилегающих к данной стороне треугольника и произведения их, деленного на оставшийся луч звезды.

Источник

№7 Эквивалентное преобразование треугольника и звезды сопротивлений.

Пусть требуется рассчитать цепь, показанную на рис. 7.1, а.

Рис. 7.1 — Преобразования электрической цепи

Расчет можно осуществить одним из описанных выше методов. Но так как в цепи имеется только один источник питания, наиболее простым было бы использование закона Ома. Однако попытка определения общего сопротивления цепи оказывается безрезультатной, так как здесь мы не находим ни последовательно, ни параллельно соединенных сопротивлений. Решить задачу помогает преобразование треугольника сопротивлений в эквивалентную звезду.

Треугольник и звезда сопротивлений имеют вид, показанный на рис. 7.2.

Рис. 7.2 — Треугольник и звезда сопротивлений

Если при замене одной из этих схем другой не изменяются потенциалы одноименных точек и подтекающие к ним токи, то во внешней цепи также не произойдет никаких изменений. В этом случае говорят, что схемы эквивалентны.

Можно показать, что условием эквивалентности являются следующие уравнения:

а) при преобразовании треугольника в звезду:

б) при преобразовании звузды в треугольник:

Читайте также:  T vst59 62 схема таблица напряжений

Например, сопротивление звезды R1, присоединенное к узлу 1, получается перемножением сопротивлений R12 и R31 треугольника, присоединенных к этому же узлу, и делением полученного произведения на сумму всех сопротивлений треугольника.

При обратном преобразовании сопротивление треугольника R12, лежащее между узлами 1 и 2, равно сумме сопротивлений звезды R1 и R2, присоединенных к этим узлам, плюс их произведение, деленное на сопротивление третьего луча звезды R3.

Пример 1.3. Рассчитать токи в цепи, изображенной на рис. 1.12, а, при следующих числовых значениях ее параметров: Е = 660 В, R1 = 20 Ом, R2 = 30 Ом, R3 = 5 Ом, R4 = 20 Ом, R5 = 50 Ом.

а) Решение преобразованием треугольника в звезду.

Теперь общее сопротивление цепи легко находится:

Ток, протекающий по источнику (одинаковый в заданной и преобразованной схемах), равен:

Токи в паралельных ветвях:

Возвращаемся к исходной схеме (рис. 7.1, а):

Ток в пятой ветви находим из первого закона Кирхгофа: I5 = I1–I3 = 26–28 = –2 A. Знак минус говорит о том, что действительное направление тока I5 противоположно указанному на схеме.

б) Решение преобразованием звезды в треугольник.

Преобразуем звезду, образуемую в схеме на рис. 7.1, а сопротивлениями R1, R5 и R3, в эквивалентный треугольник (рис. 7.1, в).

Определяем сопротивления треугольника:

Теперь рассчитываем преобразованную цепь. Сначала находим эквивалентные сопротивления участков ac и cd:

Затем определяем общее сопротивление и токи:

Возвращаемся к исходной схеме:

Рекомендуем подставить в приведенные формулы числовые значения параметров цепи и сравнить результаты вычислений с полученными в примере 1.3а.

Источник

Физический портал для школьников и абитуриентов

Вы здесь

Подготовка к олимпиаде. Методы расчета резисторных схем постоянного тока. 3. Преобразование и расчет цепей с помощью перехода «звезда» — «треугольник»

Методы расчета резисторных схем постоянного тока

3. Преобразование и расчет цепей с помощью перехода «звезда» — «треугольник»

Рассматриваемый метод основан на том, что сложную схему, имеющую три вывода (узла), можно заменить другой, с тем же числом выводов (узлов). Замену следует произвести так, чтобы сопротивление участка между двумя любыми выводами новой схемы было таким же, как у прежней. В результате получится цепь, сопротивление которой эквивалентно сопротивлению данной по условию. Общее сопротивление обеих цепей будет одинаковым. Однако, поскольку в результате такого преобразования изменяются токи внутри цепи, такую замену можно проводить только в тех случаях, когда не надо находить распределение токов.

Подобные преобразования широко известны для случая двух выводов. Так, например, два резистора сопротивлениями R1 и R2, включенные последовательно, можно заменить одним резистором сопротивлением R1 + R2. Если резисторы включены параллельно, то их можно заменить одним резистором сопротивлением

Читайте также:  Чем определить напряжение в бронированном кабеле

И в этих случаях распределение токов в цепи (или в части цепи) претерпевает изменения. Рассмотрим более сложное преобразование схем, имеющих три вывода (трехполюсников). Иначе это называется преобразованием «звезды» (рис. а) в «треугольник» (рис. б), и наоборот.

Сопротивления резисторов в схеме «звезда» обозначаются с индексом точки, с которой соединен этот резистор, например, резистор r1 соединен с точкой 1. В «треугольнике» индексы резисторов соответствуют точкам, между которыми они включены, например, резистор R13 подключен к точкам 1 и 3. Как отмечено выше, чтобы заменить одну из этих схем другой, нужно получить такие соотношения между их сопротивлениями, чтобы эквивалентные сопротивления между любыми точками были одинаковы для обеих схем (при условии сохранения числа этих точек). Так, в «звезде» сопротивление между точками 1 и 2 равно r1 + r2, в «треугольнике»

следовательно, для того чтобы сопротивления между точками 1 и 2 были одинаковы для обеих схем, необходимо, чтобы выполнялось следующее равенство:

Аналогично для точек 2 и 3 и для точек 1 и 3:

Сложим все эти уравнения и, поделив обе части на 2, получим:

Вычитая из этого уравнения поочередно предыдущие, получим:

Эти выражения легко запомнить:

знаменатель в каждой формуле есть сумма сопротивлений всех резисторов «треугольника», а в числителе дважды повторяется индекс, стоящий слева:

$r_1 \rightarrow R_<12>R_<13>, r_2 \rightarrow R_<12>R_<23>, r_3 \rightarrow R_<13>R_<23>$.

Аналогично получают и формулы обратного преобразования:

Последние выражения также легко запомнить и проверить:

числитель у всех уравнений один и тот же, а в знаменателе стоит сопротивление резистора с индексом, которого не достает в левой части выражения.

Этот метод представляет собой наиболее универсальный подход к решению практически всех типов задач на разветвленные цепи.

Задача 27. Определите сопротивление цепи АВ (рис.), если R1 = R5 = 1 Ом, R2 = R6 = 2 Ом, R3 = R7 = 3 Ом, R4 = R8 = 4 Ом.

Решение. Преобразуем «треугольники» R1R2R8 и R4R5R6 в эквивалентные «звезды». Схема примет иной вид (рис.).

Сопротивления $r_1, r_2, …, r_6$ найдем по формулам:

Теперь нет никаких препятствий для расчета схемы, которая состоит из последовательно и параллельно соединенных резисторов (рис.). После простых расчетов получим

Источник

Преобразование треугольника в звезду для напряжений

Преобразования треугольник-звезда и звезда-треугольник

Во многих схемах можно встретить такие конфигурации компонентов, в которых невозможно выделить последовательные или параллельные цепи. К этим конфигурациям относятся соединения компонентов в виде звезды (Y) и треугольника (Δ):

Читайте также:  Чем отличаются регуляторы напряжения от стабилизаторов

Очень часто, в ходе анализа электрических цепей, оказывается полезным преобразовать треугольник в звезду или, наоборот, звезду в треугольник. Практически, чаще возникает необходимость преобразования треугольника в звезду. Если при замене одной из этих схем другой не изменяются потенциалы одноименных точек и подтекающие к ним токи, то во внешней цепи также не произойдет никаких изменений. Иными словами, эквивалентные Δ и Y цепи ведут себя одинаково.

Существует несколько уравнений, используемых для преобразования одной цепи в другую:

Δ и Y цепи очень часто встречаются в 3-фазных сетях переменного тока, но там они, как правило, сбалансированы (все резисторы равны по значению) и преобразование одной цепи в другую не требует таких сложных расчетов. Тогда возникает вопрос: где мы сможем использовать эти уравнения?

Использовать их можно в несбалансированных мостовых схемах:

Анализ данной схемы при помощи Метода Токов Ветвей или Метода Контурных Токов довольно сложен. Теорема Миллмана и Теорема Наложения здесь тоже не помощники, так как в схеме имеется только один источник питания. Можно было бы использовать теорему Тевенина или Нортона, выбрав в качестве нагрузки резистор R3, но и здесь у нас вряд ли что-нибудь получится.

Помочь в этой ситуации нам сможет преобразование треугольник — звезда. Итак, давайте выберем конфигурацию резисторов R1, R2 и R3, представляющих собой треугольник (Rab, Rac и Rbc соответственно), и преобразуем ее в звезду:

После преобразования схема примет следующий вид:

В результате преобразования у нас получилась простая последовательно-параллельная цепь. Если мы правильно выполним расчеты, то напряжения между точками А, В и С преобразованной схемы будут аналогичны напряжениям между этими же точками исходной схемы, и мы сможем вернуть их обратно.

Сопротивления резисторов R4 и R5 остаются неизменными: 18 и 12 Ом соответственно. Применив к схеме последовательно-параллельный анализ, мы получим следующие значения:

Теперь, используя значения напряжений из приведенной выше таблицы, нам нужно рассчитать напряжения между точками А, В и С. Для этого мы применим обычную математическую операцию сложения (или вычитания для напряжения между точками В и С):

Переносим эти напряжения в исходную схему (между точками А, В и С):

Напряжение на резисторах R4 и R5 останется таким же, каким оно было в преобразованной схеме.

К данному моменту у нас есть все необходимые данные для определения токов через резисторы (используем для этой цели Закон Ома I = U / R):

Моделирование при помощи программы PSPICE подтвердит наши расчеты:

Источник

Оцените статью
Adblock
detector