При соединении обмоток трехфазного трансформатора по схеме коэффициент трансформации линейных

Схемы и группы соединений обмоток трансформаторов

Схемы соединений обмоток трехфазных трансформаторов

Трехфазный трансформатор имеет две трехфазные обмотки — высшего (ВН) и низшего (НН) напряжения, в каждую из которых входят по три фазные обмотки, или фазы. Таким образом, трехфазный трансформатор имеет шесть независимых фазных обмоток и 12 выводов с соответствующими зажимами, причем начальные выводы фаз обмотки высшего напряжения обозначают буквами A , B , С, конечные выводы — X , Y , Z , а для аналогичных выводов фаз обмотки низшего напряжения применяют такие обозначения: a, b, c, x, y, z.

Каждая из обмоток трехфазного трансформатора — первичная и вторичная — может быть соединена тремя различными способами, а именно:

В большинстве случаев обмотки трехфазных трансформаторов соединяют либо в звезду, либо в треугольник (рис. 1).

Осветительные сети выгодно строить на высокое напряжение, но лампы накаливания с большим номинальным напряжением имеют малую световую отдачу. Поэтому их целесообразно питать от пониженного напряжения. В этих случаях обмотки трансформатора также выгодно соединять в звезду (Y), включая лампы на фазное напряжение.

С другой стороны, с точки зрения условий работы самого трансформатора, одну из его обмоток целесообразно включать в треугольник.

Фазный коэффициент трансформации трехфазного трансформатора находят, как соотношение фазных напряжений при холостом ходе:

а линейный коэффициент трансформации, зависящий от фазного коэффициента трансформации и типа соединения фазных обмоток высшего и низшего напряжений трансформатора, по формуле:

Если соединений фазных обмоток выполнено по схемам «звезда-звезда» или «треугольник-треугольник», то оба коэффициента трансформации одинаковы, т.е. n ф = n л.

При соединении фаз обмоток трансформатора по схеме «звезда — треугольник» — n л = n фV 3 , а по схеме «треугольник-звезда» — n л = n ф / V 3

Группы соединений обмоток трансформатора

Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток. Изменение взаимной ориентации этих напряжений осуществляется соответствующей перемаркировкой начал и концов обмоток.

Стандартные обозначения начал и концов обмоток высокого и низкого напряжения показаны на рис.1.

Рассмотрим вначале влияние маркировки на фазу вторичного напряжения по отношению к первичному на примере однофазного трансформатора (рис. 2 а).

Обе обмотки расположены на одном стержне и имеют одинаковое направление намотки. Будем считать верхние клеммы началами, а нижние — концами обмоток. Тогда ЭДС Ё1 и E2 будут совпадать по фазе и соответственно будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 2 б). Если теперь во вторичной обмотке принять обратную маркировку зажимов (рис. 2 в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Следовательно, и фаза напряжения U2 меняется на 180°.

Таким образом, в однофазных трансформаторах возможны две группы соединений, соответствующих углам сдвига 0 и 180°. На практике для удобства обозначения групп используют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной постоянно на цифре 12, а часовая стрелка занимает различные положения в зависимости от угла сдвига между U1 и U2. Сдвиг 0° соответствует группе 0, а сдвиг 180° — группе 6 (рис. 3).

Читайте также:  Остановить электросчетчик через трансформатор

В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток. Рассмотрим несколько примеров.

Пусть обмотки трансформатора соединены по схеме Y/Y (рис. 4). Обмотки, расположенные на одном стержне, будем располагать одну под другой.

Зажимы А и а соединим для совмещения потенциальных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 4а, ЭДС соответствующих фаз первичной и вторичной обмоток совпадают, поэтому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 4, б). Схема имеет группу Y/Y — О.

Изменим маркировку зажимов вторичной обмотки на противоположную (рис. 5. а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС меняется на 180°. Следовательно, номер группы меняется на 6. Данная схема имеет группу Y/Y — б.

На рис. 6 представлена схема, в которой по сравнению со схемой рис 4 выполнена круговая перемаркировка зажимов вторичной обмотки. При этом фазы соответствующих ЭДС вторичной обмотки сдвигаются на 120° и, следовательно, номер группы меняется на 4.

Схемы соединений Y/Y позволяют получить четные номера групп, при соединении обмоток по схеме «звезда-треугольник» номера групп получаются нечетными. В качестве примера рассмотрим схему, представленную на рис. 7.

В этой схеме фазные ЭДС вторичной обмотки совпадают с линейными, поэтому треугольник аbс поворачивается на 30° против часовой стрелки по отношению к треугольнику АВС. Но так как угол между линейными напряжениями первичной и вторичной обмоток отсчитывается по часовой стрелке, то группа будет иметь номер 11.

Из двенадцати возможных групп соединений обмоток трехфазных трансформаторов стандартизованы две: «звезда-звезда» — 0 и «звезда-треугольник» — 11. Они, как правило, и применяются на практике.

Схемы «звезда-звезда с нулевой точкой» используют в основном для трансформаторов потребителей напряжением 6 — 10/0,4 кВ. Нулевая точка дает возможность получить напряжение 380/220 или 220/127 В, что удобно для одновременного подключения как трехфазных, так и однофазных приемников электроэнергии (электродвигателей и ламп накаливания).

Схемы «звезда-треугольник» применяют для высоковольтных трансформаторов, соединяя обмотку 35 кВ в звезду, а 6 или 10 кВ в треугольник. Схема «звезда с нулевой точкой» используется в высоковольтных системах, работающих с заземленной нейтралью.

Группы соединения обмоток трехфазных трансформаторов:

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Определение коэффициента трансформации силовых трансформаторов

Коэффициентом трансформации (К) называется отношение напряжения обмотки ВН к напряжению обмотки НН при холостом ходе трансформатора:

Читайте также:  Трансформаторы инверторов мониторов samsung

Для трехобмоточных трансформаторов коэффициентом трансформации является отношение напряжений обмоток ВН/СН, ВН/НН и СН/НН.

Значение коэффициента трансформации позволяет проверить правильное число витков обмоток трансформатора, поэтому его определяют на всех ответвлениях обмоток и для всех фаз. Эти измерения, кроме проверки самого коэффициента трансформации, дают возможность проверить правильность установки переключателя напряжения на соответствующих ступенях, а также целость обмоток.

Если трансформатор монтируется без вскрытия и при этом ряд ответвлений, недоступен для измерений, определение коэффициента трансформации производится только для доступных ответвлений.

При испытании трехобмоточных трансформаторов коэффициент трансформации достаточно проверить для двух пар обмоток, причем измерения рекомендуется проводить на тех обмотках, для которых напряжение короткого замыкания наименьшее.

В паспорте каждого трансформатора даются номинальные напряжения обеих обмоток, относящиеся к режиму холостого хода. Поэтому номинальный коэффициент трансформации можно легко определить по их отношению.

Измеренный коэффициент трансформации на всех ступенях переключателя ответвлений не должен отличаться более чем на 2 % от коэффициента трансформации на том же ответвлении на других фазах или от паспортных данных, или от данных предыдущих измерений. В случае более значительного отклонения должна быть выяснена его причина. При отсутствии виткового замыкания трансформатор может быть введен в работу.

Коэффициент трансформации определяют следующими методами:

г) образцового (стандартного) трансформатора и др.

Коэффициент трансформации рекомендуется определять методом двух вольтметров (рис. 1).

Принципиальная схема для определения коэффициента трансформации методом двух вольтметров для однофазных трансформаторов дана на рис. 1,а. Напряжение, подводимое к двум обмоткам трансформатора, одновременно измеряют двумя разными вольтметрами.

При испытании трехфазных трансформаторов одновременно измеряют линейные напряжения, соответствующие одноименным зажимам обеих проверяемых обмоток. Подводимое напряжение не должно превышать номинального напряжения трансформатора и быть чрезмерно малым, чтобы на результаты измерений не могли повлиять ошибки вследствие потери напряжения в обмотках от тока холостого хода и тока, обусловленного присоединением измерительного прибора к зажимам вторичной обмотки.

Рис. 1. Метод двух вольтметров для определения коэффициентов трансформации: а – для двухобмоточных и б – трехобмоточных трансформаторов

Подводимое напряжение должно быть от одного (для трансформаторов большой мощности) до нескольких десятков процентов номинального напряжения (для трансформаторов небольшой мощности), если испытания проводятся с целью проверки паспортных данных трансформаторов.

В большинстве случаев к трансформатору подводят напряжение от сети 380 В. В случае необходимости вольтметр присоединяется через трансформатор напряжения или включается с добавочным сопротивлением. Классы точности измерительных приборов – 0,2–0,5. Допускается присоединять вольтметр V1 к питающим проводам, а не к вводам трансформатора, если это не отразится на точности измерений из-за падения напряжения в питающих проводах.

При испытании трехфазных трансформаторов симметричное трехфазное напряжение подводят к одной обмотке и одновременно измеряют линейные напряжения на линейных зажимах первичной и вторичной обмоток.

Читайте также:  Основной трансформатор блока питания компьютера

При измерении фазных напряжений допускается определение коэффициента трансформации по фазным напряжениям соответствующих фаз. При этом проверку коэффициента трансформации производят при однофазном или трехфазном возбуждении трансформатора.

Если коэффициент трансформации был определен на заводе-изготовителе, то при монтаже целесообразно измерять те же напряжения. При отсутствии симметричного трехфазного напряжения коэффициент трансформации трехфазных трансформаторов, имеющих схему соединения обмоток Д/У или У/Д, можно определить при помощи фазных напряжений с поочередным закорачиванием фаз.

Для этого одну фазу обмотки (например, фазу А), соединенную в треугольник, закорачивают соединением двух соответствующих линейных зажимов данной обмотки. Затем при однофазном возбуждении определяют коэффициент трансформации оставшейся свободной пары фаз, который при данном методе должен быть равным 2 Kф для системы Д/У при питании со стороны звезды (рис. 2) или Kф/2 для схемы У/Д при питании со стороны треугольника, где Kф – фазный коэффициент трансформации (рис. 3).

Рис. 2. Определение коэффициентов трансформации трансформатора, соединенного по схеме Д/У, при несимметричном трехфазном напряжении: а – первое; б – второе и в – третье измерения

Аналогичным образом производят измерения при накоротко замкнутых фазах В и С. При испытании трехобмоточных трансформаторов коэффициент трансформации достаточно проверить для двух пар обмоток (см. рис. 1,б).

Если у трансформатора выведена нейтраль и доступны все начала и концы обмоток, то определение коэффициента трансформации можно производить для фазных напряжений. Проверку коэффициента трансформации по фазным напряжениям производят при однофазном или трехфазном возбуждении трансформатора.

Для трансформаторов с РПН разница коэффициента трансформации не должна превышать значения ступени регулирования. Коэффициент трансформации при приемосдаточных испытаниях определяется дважды – первый раз до монтажа, если паспортные данные отсутствуют или вызывают сомнения, и второй раз непосредственно перед вводом в эксплуатацию при снятии характеристики холостого хода.

Рис. 3. Определение коэффициентов трансформации трансформатора, соединенного по схеме У/Д, при несимметричном трехфазном напряжении: а – первое; б – второе и в – третье измерения

Рис. 4. Принципиальная схема универсального прибора типа УИКТ-3

Для ускорения измерения коэффициента трансформации применяется универсальный прибор типа УИКТ-3, которым можно измерить коэффициенты трансформации силовых и измерительных трансформаторов тока и напряжения без применения постороннего источника переменного тока. Одновременно с измерением коэффициента трансформации определяется полярность первичной и вторичной обмоток. Погрешность в измерении не должна превышать 0,5 % измеряемой величины.

Принцип работы прибора основан на сравнении напряжений, индуктируемых во вторичной и первичной обмотках трансформатора, с падением напряжения на известных сопротивлениях (рис. 4). Сравнение производится по мостовой схеме.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Оцените статью
Adblock
detector