Провести анализ зависимости задерживающего напряжения от частоты падающего света u0

Определение зависимости задерживающего напряжения от частоты света

1.Включить осциллограф и источник света, большой тумблер 4 (см. рис. 6) блока питания переводится в верхнее, а малый тумблер 6 — в край­нее левое положение. Регулятором 5 установить задерживающее напряже­ние равным 0 вольт. Установить фотоэлемент вплотную к ис­точнику света. При этом на экране осциллографа должен наблюдаться сиг­нал в виде вертикальной линии, размах которой»пропорционален напряже­нию с фотоэлемента.

2.Помещая между источником света и фотоэлементом различные светофильтры и поворачивая ручку регулятора , на передней панели бло­ка питания, определить для каждого фильтра значение , соответствую­щее полной задержке электронов по минимуму размаха сигнала на осцил­лографе. Измерения провести пять раз для всего набора светофильтров.

Придвинуть на небольшое расстояние (5-7 см) источник света к фо­тоэлементу, изменив тем самым мощность светового потока (опыт провес­ти для какого-нибудь одного светофильтра).

По окончании измерений выключить осциллограф!

3. Выписать из таблицы 2 значения частот пропус­кания всех светофильтров. Рассчитать кинетическую энергию и скорость
электронов для разных значений частоты света.

4. По данным своих измерений построить график зависимости за­держивающего напряжения , от частоты света v и,(экстраполируя экспе­риментальную прямую до пересечения с осями v и определить «крас­ную границу» фотоэффекта и работу выхода электрона. Рассчитать посто­янную Планка для всех значений частот, учитывая, что энергия фотона
hv = kev /см. выражения (2), (3)/, имеем к = h/e ; = tga). Найти величину
отклонения расчетного значения h от табличного, оценить точность опыта

Источник

Задерживающий потенциал.

Уравнение Эйнштейна можно записать в виде: и выразить задерживающий потенциал:

На рисунке показан график зависимости задерживающего потенциала от частоты падающего света. По графику можно найти работу выхода А, красную границу nгр , а по наклону прямой можно определить величину постоянной Планка h.

Фотоэлементы широко используются в физике и технике. Вакуумные фотоэлементы довольно громоздки и дают небольшие токи, но вследствие своей безинерционности и линейной световой характеристики они незаменимы в тех случаях, когда необходимо превратить световые сигналы в электрические без каких-либо искажений. Существование тока насыщения в фотоэлементах позволят использовать их в стабилизаторах (напряжение изменяется, а ток остается постоянным). Фотоэлементы очень часто применяют в турникетах, для подсчета движущихся изделий на конвейерах и т.п.

Эффектом Комптона называется рассеяние веществом электромагнитного излучения, при котором частота рассеянного излучения уменьшается по сравнению с первоначальной, и одновременно наблюдается вылет быстрых электронов (электроны отдачи). Изменение частоты оказывается различной в зависимости от угла наблюдения. Американский ученый Комптон, открывший это явление (1923 г) разработал теорию явления. Он предложил рассматривать наблюдаемое взаимодействие света с веществом как упругое столкновение

Читайте также:  Стабилизатор напряжения idealart id pr1000

частиц — фотона и электрона. Используя законы сохранения импульса и энергии, Комптон получил формулу для изменения длины волны в зависимости от угла рассеяния..

Мы не будем приводить полный вывод формулы для изменения длины волны, а запишем только законы сохранения и окончательную формулу. Так как эффект Комптона наблюдается только для фотонов с большой энергией (рентгеновские и гамма-лучи), то при вычислениях необходимо использовать формулы СТО, и вывод становится громоздким. [x]

На рис. показано столкновение первоначального фотона с энергией hnо с электроном в веществе (на рис. не показан). Импульс и энергия электрона до столкновения пренебрежимо малы по сравнению с импульсом и энергией фотона, т.е. электрон можно считать свободным. (Обычно употребляется выражение «рассеяние фотона на свободном электроне»). После столкновения фотон отклоняется от первоначального направления под углом q , а его энергия уменьшается и становится равной hn.Электрон получает импульс и кинетическую энергию и летит под углом j. (электрон отдачи, угол отдачи).

закон сохранения импульса в векторном и скалярном виде (теорема косинусов). — импульс падающего фотона, — импульс рассеянного фотона, — импульс электрона. q — угол рассеяния
закон сохранения энергии — энергия падающего фотона, — энергия рассеянного фотона, — кинетическая энергия электрона отдачи (электрон релятивистский).

Подставив в эти законы выражения для указанных величин, приведенные ниже, после преобразований получим:

¨ или изменение длины волны при комптоновском рассеянии излучения (на свободном электроне) Из формул следует, что комптоновское изменение длины волны не зависит от природы рассеивающего вещества, а определяется только углом наблюдения.
= 2,43 пм = 2,43×10 — 12 м Эта величина называется комптоновской длиной волны электрона

Комптоновское рассеяние может наблюдаться и на свободном протоне, тогда следует использовать комптоновскую длину волны протона:

Из формулы (¨) следует, что изменение l при различных углах рассеяния равно:

q = 0 о Dl = 0 фотоны, продолжающие лететь в первоначальном направлении, не изменяют свою длину волны
q = 90 о Dl = в этом случае изменение l равно комптоновской длине волны электрона
q = 180 о Dl = максимальное изменение l происходит в случае, когда рассеянный фотон движется в противоположном направлении

Ниже приводится таблица формул, используя которые можно получить выражение (¨) для Dl. Компактное расположение формул облегчает также решение задач.

энергия падающего и рассеянного фотонов
импульс —²—
релятивистская кинетическая энергия электрона отдачи
по этой формуле можно найти угол отдачи j
Читайте также:  Уровень заряда литиевого аккумулятора по напряжению таблица

Комптоновское рассеяние наблюдается только для рентгеновских и гамма-лучей. В этом случае изменение длины волны сравнимо с длиной волны падающего излучения, и может быть измерено экспериментально. Для видимого света обнаружить эффект Комптона невозможно, т.к. максимальное изменение Dl = 0,48 пм слишком мало по сравнению со средней длиной световой волны

l » 500 нм = 500000 пм (зеленый свет) и перекрывается тепловым уширением спектральных линий..

Эффект Комптона доказывает, что: 1) свет имеет квантовую природу и

2) для элементарных процессов взаимодействия частиц применимы законы сохранения импульса и энергии.

ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ АТОМОВ И МОДЕЛЬ АТОМА БОРА.

Источник

Провести анализ зависимости задерживающего напряжения от частоты падающего света u0

Цель работы: изучение явления фотоэффекта и определение постоянной Планка.

Фотоэффект — вырывание электронов из вещества под действием света. В металле электрон движется свободно, но при вылете его с поверхности сам металл из-за этого заряжается положительным зарядом и препятствует вылету. Поэтому для того, чтобы покинуть металл, электрон должен обладать дополнительной энергией, зависящей от вещества. Эта энергия называется работой выхода.

Для исследования фотоэффекта можно собрать установку, изображенную на рис. 1. Она состоит из стеклянного баллона, из которого выкачан воздух. Окно, через которое падает свет, сделано из кварцевого стекла, пропускающего видимые и ультрафиолетовые лучи. Внутри баллона впаяны два электрода: один из которых — катод — освещается через окно. Между электродами источник создает электрическое поле, которое заставляет двигаться фотоэлектроны от катода к аноду.

движущиеся электроны образуют электрический ток (фототок). При изменении напряжения меняется сила тока. График зависимости I от U — вольтамперная характеристика — приведен на рис. 2. При малых напряжениях не все вырванные из катода электроны достигают анода, при увеличении напряжения их число возрастает. При некотором напряжении все вырванные светом электроны достигают анода, тогда устанавливается ток насыщения Iн, при дальнейшем увеличении напряжения ток не изменяется.

При увеличении интенсивности падающего излучения наблюдается возрастание тока насыщения, пропорционального числу вырванных электронов. 1-й закон фотоэффекта утверждает, что количество электронов, вырванных светом с поверхности металла, пропорционально поглощенной энергии световой волны.

Для измерения кинетической энергии электронов нужно поменять полярность источника тока. На графике этому случаю соответствует участок при U , на котором фототок падает до нуля. Теперь поле не разгоняет, а тормозит фотоэлектроны. При некотором напряжении, названном задерживающим U3, фототок исчезает. При этом все электроны будут остановлены полем, затем поле вернет их в бывший катод, подобно тому, как брошенный вверх камень будет остановлен полем тяготения Земли и возвращен снова на Землю.

Читайте также:  Просадка напряжения лансер 9

Работа сил электрического поля A = qU3, затраченная на торможение электрона, равна изменению кинетической энергии электрона, то есть mv 2 /2 = qU3, где m — масса электрона, v — его скорость, q — заряд. Т.е., измеряя задерживающее напряжение U3, мы определяем максимальную кинетическую энергию. Оказалось, что максимальная кинетическая энергия электронов зависит не от интенсивности света, а только от частоты. Это утверждение называют 2-м законом фотоэффекта.

При некоторой граничной частоте света, которая зависит от конкретного вещества, и при более низких частотах фотоэффект не наблюдается. Эта граничная частота носит название «красной» границы фотоэффекта.

Объяснил законы фотоэффекта А. Эйнштейн в 1905 г. Он воспользовался идеей Планка о квантовой природе света. Энергия одного кванта света E = hν . Если предположить, что один квант света вырывает один электрон, то энергия кванта Е идет на совершение работы выхода электрона А и на сообщение ему кинетической энергии mv 2 /2. То есть

Это уравнение носит название уравнения Эйнштейна для фотоэффекта.

Объясним с позиций идеи Эйнштейна 1-й закон фотоэффекта. Если один квант энергии вырывает один электрон, то чем больше квантов поглощает вещество (чем больше интенсивность света), тем больше электронов вылетит из вещества.

Объясним второй закон фотоэффекта. Работа выхода А зависит от рода вещества и не зависит от частоты света. Кинетическая энергия электрона, вырванного из вещества, mv 2 /2=h — A зависит от частоты света ν : чем больше частота, тем большую кинетическую энергию получит электрон. Интенсивность света не влияет на кинетическую энергию электрона, потому что уравнение Эйнштейна описывает энергетику одного электрона. Не важно, сколько вылетит электронов, скорость каждого из них зависит от частоты.

Формула Эйнштейна объясняет и тот факт, что свет данной частоты из одного вещества может вырвать электрон, а из другого — не может. Для каждого вещества фотоэффект наблюдается в том случае, если энергия кванта света больше или, в крайнем случае, равна работе выхода (hν ≥ A). Предельная частота, при которой еще возможен фотоэффект, νmin = A/h. Это частота, при которой совершается вырывание электронов без сообщения им кинетической энергии, — частота «красной границы» фотоэффекта.

Уравнение Эйнштейна запишем для случая, когда кинетическая энергия электрона равна по величине работе сил электрического поля, то есть при задерживающем напряжении:

Построим график зависимости задерживающего напряжения от частоты (рис. 3). Из формулы видно, что зависимость U3 от ν является линейной. Тангенс угла наклона графика:

Эта формула служит для экспериментального определения постоянной Планка.

Источник

Оцените статью
Adblock
detector