Пусковой ток силового трансформатора

Ток включения трансформатора

При включении трансформатора в сеть толчком на полное напряжение в трансформаторе могут возникнуть весьма большие броски тока намагничивания , превышающие в десятки раз ток намагничивания (холостого хода) при нормальной работе.

Так как ток намагничивания в трансформаторе не превосходит нескольких процентов номинального тока трансформатора, то максимальные значения бросков токов намагничивания при включении трансформатора толчком превышают номинальный ток не более чем в 6 — 8 раз.

С точки зрения динамической устойчивости обмоток трансформатора указанные броски тока намагничивания для трансформатора безопасны, так как обмотка рассчитывается на большие кратности токов, имеющие место при коротких замыканиях за трансформатором. Защита же трансформатора отстраивается от упомянутых бросков тока намагничивания путем применения соответствующих устройств (насыщающихся промежуточных трансформаторов и др.).

При включении обмотки на полное напряжение в обмотке могут возникнуть перенапряжения вследствие неравномерного распределения напряжения по обмотке и возникновения переходных волновых процессов. Но указанные перенапряжения для обмоток трансформатора безопасны, так как изоляция их рассчитывается на более значительные атмосферные (грозовые) перенапряжения.

Поэтому включение всех трансформаторов в сеть толчком на полное напряжение является совершенно безопасным, оно производится без предварительного подогрева трансформатора вне зависимости от времени года и температуры масла трансформатора.

Указанное распространяется также на включение в сеть трансформатора после монтажа или капитального ремонта, так как опыт показал, что при включении толчком и наличии повреждения трансформатор своевременно отключается защитой и размеры повреждения при этом бывают не больше, чем при включении трансформатора путем медленного подъема напряжения с нуля, что вызывает значительные трудности в условиях эксплуатации, а зачастую невозможно.

Трансформаторы должны включаться толчком на полное напряжение со стороны питания, где должна быть установлена соответствующая защита.

Испытание включением толчком на номинальное напряжение

При 3—5-кратном включении не должны иметь место явления, указывающие на неудовлетворительное состояние трансформатора. Этим опытом проверяется также отстройка максимальной токовой защиты от бросков тока намагничивания трансформатора. Физически возникновение сверхтока объясняется следующим. При включении трансформатора возникает переходный процесс, в течение которого магнитный поток можно рассматривать как сумму двух составляющих: периодической с неизменной амплитудой и медленно затухающей апериодической.

В момент включения эти составляющие равны по значению и противоположны по знаку, сумма их равна нулю. Когда же периодическая составляющая приобретает ту же полярность, что и апериодическая, они суммируются арифметически. Наибольшее возможное значение этой суммы близко к двукратной амплитуде периодической составляющей. Вследствие глубокого насыщения стали магнитопровода бросок тока холостого хода может превысить установившееся значение его в десятки и сотни раз и в 4—6 раз — номинальный ток.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Что такое пусковой ток и как его ограничить

Что такое пусковой ток

Пусковой ток – это максимальный ток, потребляемый электрической цепью во время ее включения. Значение пускового тока намного выше, чем установившийся ток цепи, и этот высокий ток может повредить устройство или привести в действие автоматический выключатель. Пусковой ток обычно появляется во всех устройствах, где присутствует магнитный сердечник, таких как трансформаторы, промышленные двигатели и т. д. Пусковой ток также известен как входной импульсный ток или импульсный ток включения.

Почему появляется пусковой ток

Есть причина появления пускового тока. Подобно некоторым устройствам или системам, которые имеют развязывающий конденсатор или сглаживающий конденсатор, при запуске потребляется большое количество тока для их зарядки. Ниже приведенная диаграмма даст вам представление о разнице между пусковым, пиковым и установившимся током цепи.

Пиковый ток: это максимальное значение тока, достигаемое сигналом в положительной или отрицательной области.

Ток установившегося состояния: он определяется как ток в каждом интервале времени, который остается постоянным в цепи. Ток установившегося состояния достигается, когда di/dt = 0, что означает, что ток остается неизменным во времени.

Особенности пускового тока: появляется мгновенно, когда устройство включается; появляется на короткий промежуток времени; выше номинального значения цепи или устройства.

Пусковой ток трансформатора

Пусковой ток трансформатора определяется как максимальный мгновенный ток, потребляемый трансформатором, когда вторичная сторона не нагружена или находится в состоянии разомкнутой цепи. Этот бросок тока вредит магнитным свойствам сердечника и вызывает нежелательное переключение автоматического выключателя трансформатора.

Величина пускового тока зависит от точки волны переменного тока, в которой запускается трансформатор. Если трансформатор (без нагрузки) включается, когда напряжение переменного тока достигает своего пика, тогда пусковой ток не возникает при запуске, и если трансформатор (без нагрузки) включается, когда напряжение переменного тока проходит через ноль, то значение броска ток будет очень высоким, и он также будет превышать ток насыщения, как вы можете видеть на изображении выше.

Пусковой ток двигателя

Как и трансформатор, асинхронный двигатель не имеет непрерывного магнитного пути. Сопротивление асинхронного двигателя высокое из-за воздушного зазора между ротором и статором. Следовательно, из-за такого характера индуктивного устройства с высоким сопротивлением требуется большой ток намагничивания для создания вращающегося магнитного поля при запуске. График ниже показывает пусковые характеристики двигателя при полном напряжении.

Как вы можете видеть на графике, пусковой ток и пусковой момент очень высоки в начале. Этот высокий пусковой ток может повредить электрическую систему, а начальный высокий крутящий момент может повлиять на механическую систему двигателя. Если уменьшить начальное значение напряжения на 50%, это может привести к снижению крутящего момента двигателя на 75%. Таким образом, для преодоления этих проблем используются схемы питания с плавным пуском.

Как ограничить пусковой ток

Всегда следует помнить о пусковом токе в асинхронных двигателях, трансформаторах и в электронных цепях, которые состоят из катушек индуктивности, конденсаторов или сердечников. Как упоминалось ранее, пусковой ток – это максимальный пиковый ток, наблюдаемый в системе, и он может быть в два-десять раз больше нормального номинального тока. Этот нежелательный всплеск тока может повредить устройство, пусковой ток может вызвать срабатывание выключателя при каждом включении. Регулировка допуска выключателя может помочь нам, но компоненты должны выдерживать пиковое значение.

Находясь в электронной схеме, некоторые компоненты должны выдерживать высокие значения пускового тока в течение короткого промежутка времени. Но некоторые компоненты сильно нагреваются или повреждаются, если значение при быстром запуске очень велико. Поэтому лучше использовать схему защиты от пускового тока при проектировании электронной схемы или печатной платы.

Для защиты от пускового тока вы можете использовать активное или пассивное устройство. Выбор типа защиты зависит от частоты пускового тока, производительности, стоимости и надежности.

Вы можете использовать NTC-термистор (с отрицательным температурным коэффициентом), который является пассивным устройством, работает как электрический резистор, сопротивление которого очень высоко при низкотемпературном значении. Термистор NTC соединяется последовательно с входной линией питания. Обладает высокой устойчивостью при температуре окружающей среды. Поэтому, когда мы включаем устройство, высокое сопротивление ограничивает пусковой ток, который протекает в систему. По мере непрерывного протекания тока температура термистора повышается, что значительно снижает сопротивление. Следовательно, термистор стабилизирует пусковой ток и позволяет постоянному току течь в цепь. Термистор NTC широко используется для ограничения тока из-за его простой конструкции и низкой стоимости. У него также есть некоторые недостатки, например, нельзя полагаться на термистор в экстремальных погодных условиях.

Читайте также:  Очень сильно греется трансформатор

Активные устройства ограничения пускового тока стоят дороже, а также увеличивают размер системы или схемы. Они состоят из чувствительных компонентов, которые переключают высокий входящий ток. Некоторые из активных устройств – устройства плавного пуска, регуляторы напряжения и преобразователи постоянного тока.

Эти средства защиты используются для защиты как электрической, так и механической системы путем ограничения мгновенного пускового тока. На приведенном ниже графике показано значение пускового тока со схемой защиты и без схемы защиты. Мы ясно видим, насколько эффективна защита от пускового тока.

Как измерить пусковой ток

Сегодня на рынке представлено большое количество клещей (мультиметров), которые обеспечивают измерение пускового тока. Также вы можете использовать токовые клещи Fluke 376 FC True-RMS для измерения пускового тока. Иногда пусковой ток показывает значение, которое выше номинального значения автоматического выключателя, но, тем не менее, автоматический выключатель не отключается. Причина этого заключается в том, что автоматический выключатель работает по кривой зависимости тока от времени, например, если бы вы использовали автоматический выключатель на 10 А, поэтому пусковой ток, превышающий 10 А, должен протекать через автоматический выключатель больше, чем номинальное время.

Выполните следующие шаги для измерения пускового тока:

  • Тестируемое устройство должно быть отключено изначально.
  • Поверните циферблат и установите переключатель на Hz-A.
  • Поместите провод под напряжением в клещи или используйте датчик, соединенный с измерителем.
  • Нажмите кнопку измерения пускового тока, как показано на рисунке выше.
  • Включив испытуемое устройство, вы получите значение пускового тока на дисплее прибора.

Источник

Пусковой ток силового трансформатора

При подключении трансформатора к сети (даже без нагрузки) ток через первичную обмотку трансформатора во время переходных процессов может достигать больших значений — во много раз превышающих ток в рабочем режиме полностью нагруженного трансформатора. Это явление хорошо известно и имеет простое объяснение; существует ряд более или менее успешных методов борьбы с ним. Тем не менее, для многих из тех, кто ранее имел дело только с трансформаторами крайне малой мощности (до нескольких десятков ватт), наличие очень больших пусковых токов в более мощных трансформаторах (несколько сотен ватт и более), становится неприятной неожиданностью.


Рис. %img:xmp1. Бросок тока при включении трансформатора

Пусковые токи наблюдаются и при включении маломощных трансформаторов, но там они столь невелики (ограничиваются большим активным сопротивлением первичной обмотки), что обычно их не принимают в расчёт. Например, на рис. %img:xmp1 изображён переходный процесс (начальный участок, первые пять периодов) для трансформатора мощностью порядка 50 Вт, включаемого без нагрузки. Здесь рассматривается самый неблагоприятный случай включения, когда оно происходит в момент прохождения напряжения источника через 0. График напряжения источника в условном масштабе размещён внизу (здесь амплитуда соответствует действующему напряжению 230 В).

Введение

Всем хорошо известна проблема зарядных токов, возникающих при подключении к источнику напряжения нагрузки со сглаживающими конденсаторами. А вот о том, что какие-то подобные неприятности могут возникнуть при включении в цепь индуктивности (например, первичной обмотки ненагруженного трансформатора в сеть переменного тока), многие даже не задумываются. Вероятно считается, что поскольку ток через индуктивность — неразрывная функция с точки зрения теории цепей, то если до подключения индуктивности ток через неё равен нулю, то и в момент сразу после подключения он будет таким же, нулевым. А потом, видимо, всё как-нибудь само собой уладится.

И на самом деле, в начальный момент ток через индуктивность равен нулю (если до момента включения он был нулевым). Но далее начинается переходный процесс, который при подключении индуктивности к источнику переменного напряжения имеет некоторые интересные особенности. Если рассматривается линейная индуктивность, то во время переходного процесса ток по абсолютной величине в определённые моменты времени может достигать значения, вдвое превышающего амплитуду тока в установившемся режиме (конкретное значение зависит от момента включения).

Если индуктивность имеет ферромагнитный сердечник, то её можно считать линейной только в грубом приближении и только пока ток достаточно мал, чтобы не происходило насыщение сердечника. Точнее говоря, мгновенные значения тока должны соответствовать какому-то линейному участку на кривой намагничивания материала сердечника; в случае обычного трансформатора в рабочем режиме используется участок, не заходящий значительно в область насыщения. Но во время переходного процесса, за счёт того, что мгновенные значения тока могут превышать максимальные (амплитудные) значения в установившемся режиме, насыщение становится возможным. Тем более что с точки зрения оптимального использования материалов, минимизации размеров, массы и стоимости устройства, амплитуду магнитной индукции в установившемся режиме выгодно выбирать как можно большей, вблизи насыщения.

В результате, в моменты во время переходного процесса после включения, когда происходит насыщение сердечника, магнитная проницаемость материала резко уменьшается, а значит, резко падают индуктивность и реактивное сопротивление. Ток возрастает, что приводит к ещё более глубокому насыщению сердечника. Таким образом, формируется импульс тока очень большой амплитуды. В наиболее неблагоприятных случаях он в десятки раз превышает амплитуду тока первичной обмотки полностью нагруженного трансформатора в установившемся режиме.

Причины появления пусковых токов

Для простоты будем рассматривать трансформатор, работающий в режиме холостого хода, т.е. без нагрузки. Такой трансформатор эквивалентен просто индуктивности, образованной первичной обмоткой трансформатора. Соответственно, переходные процессы при включении ненагруженного трансформатора будем исследовать как переходные процессы в индуктивности. На рис. %img:mdl изображена эквивалентная схема, соответствующая рассматриваемой задаче. Сопротивление R на схеме соответствует внутреннему активному сопротивлению обмотки трансформатора. В это сопротивление следует также включить сопротивление соединительных проводов и внутреннее сопротивление источника переменного напряжения, если они слишком велики, чтобы ими можно было пренебречь.

Чтобы объяснить появление пусковых токов, необходимо учесть несколько важных моментов.

Прежде всего, будем иметь в виду то, что при создании трансформатора стараются добиться минимальных потерь. В частности, стремятся к тому, чтобы активное сопротивление обмоток было по возможности малым. В результате, как правило, обмотки являются высокодобротными индуктивностями — их реактивное сопротивление на рабочей частоте много больше (по крайней мере, в несколько раз больше) активного сопротивления: $$ \omega L \gg R, $$ где \(\omega\) есть циклическая частота источника, т.е. \( \omega = 2 \pi f \).

С другой стороны, конструируя трансформатор, стремятся к экономии материалов (для минимизации размеров, массы и стоимости трансформатора). Для минимизации размеров сердечника и обмоток выгодно, чтобы амплитуда магнитной индукции в сердечнике была по возможности большей, обычно при её выборе ориентируются на значение около 70%..80% от индукции насыщения (рис. %img:b_h).

На рисунке жёлтым прямоугольником выделена область, содержащая участок кривой намагничивания, используемый в установившемся режиме работы трансформатора. Здесь предполагается, что сердечник выполнен из электротехнической стали марки 3414 (по ГОСТ 21427.1-83, при напряжённости магнитного поля 2500 А/м, магнитная индукция составляет не менее 1.88 Тл для этой стали). Петлю гистерезиса считаем достаточно узкой, чтобы в первом приближении наличием гистерезиса можно было пренебречь.

Наличие ферромагнитного сердечника делает нелинейной индуктивность, образованную обмоткой трансформатора. Но с другой стороны, при обычных для трансформатора уровнях амплитуды магнитной индукции, в грубом приближении, возможно использовать линейную модель.

Читайте также:  Основные элементы трансформатора вл80с

Из теории электрических цепей мы знаем, что при подключении линейной индуктивности к источнику переменного напряжения, возникает переходный процесс, во время которого, при определённых условиях, пиковые значения тока через индуктивность могут вдвое превышать амплитуду тока в установившемся режиме (по крайней мере, это справедливо для высокодобротных индуктивностей). Конечно, пиковое значение, равное удвоенной амплитуде тока холостого хода — это совсем не те огромные броски тока, которые наблюдаются при включении трансформаторов в сеть. Но удвоенному значению тока соответствует удвоенное значение напряжённости магнитного поля, а этого более чем достаточно для вывода сердечника в область насыщения, с учётом того, что в установившемся режиме он и так работает с заходом в области, граничащие с областью насыщения.

Итак, с учётом сказанного, причина возникновения больших пусковых токов при включении трансформатора становится совершенно очевидной. Из соображений минимизации размеров и массы трансформатора, для его сердечника выбирают режим, при котором амплитуда магнитной индукции не намного меньше индукции насыщения. При подключении к источнику переменного напряжения, возникает переходный процесс, во время которого пиковый ток через индуктивность может вдвое превышать амплитуду тока в установившемся режиме, это справедливо для линейной индуктивности. Но в нашем случае рост тока приводит к выраженному проявлению нелинейных свойств индуктивности с ферромагнитным сердечником. Удвоение тока означает удвоение напряжённости магнитного поля, а значит, сердечник выходит в область насыщения. Магнитная проницаемость материала сердечника резко падает, соответственно очень сильно уменьшается реактивное сопротивление обмотки, ток через обмотку возрастает ещё больше. Как было указано, активное сопротивление обмотки мало по сравнению с индуктивным сопротивлением в нормальном режиме, поэтому при резком уменьшении реактивного сопротивления появляются импульсы тока с очень большими пиковыми значениями.

Следует отметить, что не каждое включение обязательно сопровождается одинаково большими пусковыми токами. Дело в том, что характер переходных процессов зависит от начальной фазы источника переменного напряжения (фазы в момент включения). Далее покажем, что наибольшие токи достигаются при подключении в момент, когда напряжение источника проходит через ноль. Если же подключить трансформатор (индуктивность) в момент, когда напряжение источника достигает амплитудного значения, переходный процесс отсутствует вовсе, сразу начинается работа в установившемся режиме. Соответственно, при подключении в некоторые промежуточные моменты между указанными крайними вариантами, будет наблюдаться более или менее выраженный переходный процесс, и в случае насыщения сердечника — появляться большие или меньшие пусковые токи. Таким образом, если производить включение трансформатора в произвольные, случайные моменты времени, то некоторые включения могут происходить вполне «спокойно», если в этот момент мгновенное напряжение источника по абсолютной величине находится вблизи амплитудного значения.

Более детальный анализ показывает, что присутствие нагрузки, по крайней мере, чисто активной, не изменяет принципиально характер переходных процессов. Наблюдаются небольшие количественные изменения: переходный процесс оказывается менее продолжительным, пиковые значения тока несколько ниже. Что можно объяснить внесением дополнительного эквивалентного сопротивления в цепь первичной обмотки при наличии нагрузки. Что касается установившегося режима, то, как известно, амплитуда магнитной индукции в сердечнике трансформатора практически не зависит от нагрузки и примерно равна амплитуде магнитной индукции на холостом ходу. А потому, если в установившемся режиме на холостом ходу нет насыщения сердечника, то оно не будет происходить и в нагруженном трансформаторе.

Способы борьбы с пусковыми токами

Зачастую наличие пускового тока допустимо и специальных мер по борьбе с ним не требуется. Но если он оказывается слишком велик, нетрудно найти способы его ограничения. С учётом причин данного явления, можно предложить следующие варианты: изменение конструкции трансформатора таким образом, чтобы переходный процесс при включении не приводил к насыщению сердечника; выбор благоприятного момента включения; первоначальное включение через ограничивающий ток резистор с последующим замыканием этого резистора.

1. При проектировании трансформатора можно примерно в 1.5..2 раза снизить амплитудное значение магнитной индукции в сердечнике (в установившемся режиме) относительно традиционно принятых значений. Тогда во время переходного процесса, насыщения сердечника не происходит и проблема пусковых токов полностью устраняется. На практике это достигается соответствующим увеличением числа витков для сердечника данного сечения.

В самом деле, если считать, что амплитуда напряжённости магнитного поля в сердечнике на холостом ходу $$ H = \frac l, $$ то амплитуда магнитной индукции $$ B = <\mu>_0 \mu H = \frac <<\mu>_0 \mu n I> l, $$ где \(<\mu>_0\) — магнитная постоянная; \( \mu\ \) — магнитная проницаемость материала сердечника; n — количество витков; I — амплитуда тока в обмотке; l — средняя длина магнитной линии в магнитопроводе (или длина магнитопровода, с целью грубой оценки можно пренебречь тем, что линии, проходящие через разные точки сечения магнитопровода, имеют разную длину). Амплитуду тока холостого хода можно выразить через реактивное сопротивление индуктивности обмотки и амплитуду напряжения источника, к которому подключена индуктивность (активным сопротивлением пренебрегаем, считая индуктивность высокодобротной): $$ I \approx \frac U <2 \pi f l>, $$ индуктивность L примем равной $$ L = \frac <<\mu>_0 \mu n^2 S> l $$ (S — площадь поперечного сечения магнитопровода). Тогда окончательно получаем $$ B = \frac <<\mu>_0 \mu n> l \frac <2 \pi f <\mu>_0 \mu n^2 S> = \frac U <2 \pi f n s>$$ или $$ n=\frac U <2 \pi f s b>, $$ т.е., действительно, меньшему значению амплитуды B при прочих равных условиях соответствует большее количество витков n.

Однако предложенный способ устранения пусковых токов довольно затратен. Увеличение количества витков в обмотках означает увеличение длины провода, а значит объёма и массы обмотки. Кроме того, чтобы потери в обмотке трансформатора не увеличились при увеличении длины провода, необходимо соответственно увеличить сечение провода, т.е. размеры обмотки увеличиваются ещё в большей степени. В результате такая обмотка не поместится в окно исходного магнитопровода, значит, потребуется выбрать магнитопровод большего размера.

Трансформатор, полностью свободный от пусковых токов получается больше, тяжелее и дороже, чем обычный трансформатор такой же мощности.

2. Можно усложнить схему включения так, чтобы подключение трансформатора к сети происходило в наиболее выгодный момент — в момент, когда мгновенное напряжение в сети достигает амплитудного значения. Потребуется электронный ключ достаточной мощности (например, симистор) для быстрой коммутации трансформатора и схема управления. Задача усложняется тем, что напряжение в сети может быть сильно зашумлено, а кроме того, схема должна отрабатывать не только первоначальное включение, но и возможные кратковременные перебои в электроснабжении.

Развивая этот подход, путём совершенствования схемы управления и используя метод фазовой регулировки напряжения с помощью симистора, придём к системе ограничения тока независимо от причины его повышения сверх заданных пределов (пуск, перегрузка, короткое замыкание).

3. Можно ограничить пусковой ток за счёт токоограничивающего резистора, который через некоторое время после включения трансформатора замыкается накоротко. Здесь уже не требуется использование быстродействующих ключей (применимы медленные релейные схемы) и в целом схема включения получается проще. Возможные проблемы — как и в предыдущем случае, переходный процесс возникает не только при первоначальном включении, но и при восстановлении напряжения в сети после временных перебоев питания. Кроме того, пусковой ток не отсутствует полностью, но он ограничен определённым значением.

В простейшем случае ток может быть ограничен подходящим NTC термистором (рис. %img:ntc). Но при повторных включениях, после отключения до последующего включения должно выдерживаться время в несколько десятков секунд, иначе термистор не успеет охладиться, его сопротивление будет оставаться низким и функцию ограничения тока он выполнять не будет.

4. Не требуется специальных мер для ограничения пускового тока, если его наибольшее значение допустимо как для сети, так и для трансформатора. При этом, если трансформатор достаточно мощный, может потребоваться использование более инерционных защитных автоматических выключателей (класса C) в цепи питания трансформатора, которые не успевают срабатывать за время переходного процесса.

Читайте также:  Расчет выходного звукового трансформатора

Не требуется ограничивать пусковой ток маломощных трансформаторов — активное сопротивление их первичной обмотки столь велико (от десятков Ом до нескольких тысяч Ом у самых маломощных), что оно естественным образом ограничивает пусковой ток.

Переходные процессы при подключении индуктивности к источнику переменного напряжения

Поскольку этот вопрос тесно связан с проблемой пусковых токов, рассмотрим подробнее переходные процессы при подключении линейной индуктивности к источнику переменного напряжения. Будем анализировать переходный процесс в RL-цепи, образованной индуктивностью катушки L и её активным сопротивлением R (внутреннее сопротивление источника переменного напряжения и сопротивление соединительных проводов считаем малыми и пренебрегаем этими сопротивлениями, либо включаем их в состав R).

Если u — мгновенное напряжение источника, то рассматриваемая электрическая цепь описывается уравнением $$ \begin u = iR + L \frac

, \label \end $$ которое является линейным дифференциальным уравнением относительно i.

Из теории дифференциальных уравнений нам известно, что общее решение линейного уравнения представляет собой сумму общего решения соответствующего ему однородного уравнения и частного решения исходного уравнения. Или, в терминологии теории цепей, интересующая нас реакция цепи на внешнее воздействие равна сумме свободной и вынужденной (установившейся) составляющей, т.е. $$ i = i_1 + i_2, $$ где i1 — общее решение однородного уравнения (которое получается из исходного (\ref), если положить u = 0), $$ \begin i_1 R + L \frac

= 0, \label \end $$ i2 — частное решение исходного уравнения (\ref).

Свободная составляющая i1 находится элементарно: $$ i_1 R + L \frac

= 0, \\ \frac
= — \frac R L i_1, \\ \frac = — \frac R L dt, \\ i_1 = A e^<-\frac R L t>, $$ где A — постоянная, определяемая начальными условиями.

Вынужденную составляющую i2 также не составляет труда найти. Допустим, мгновенное напряжение источника $$ \begin u = U \sin(\omega t + \phi), \label \end $$ где U — амплитуда источника; \( \omega \) — циклическая частота, \( \omega = 2 \pi f \); \(\phi\) — начальная фаза, т.е. величина, определяющая мгновенное значение напряжения источника в начальный момент времени (за начальный принимаем момент подключения индуктивности к источнику).

Как известно, при не слишком жёстких требованиях к свойствам цепи (которые здесь выполняются), установившаяся реакция (в данном случае — ток i2) на синусоидальное воздействие, также является синусоидальной, причём имеет ту же частоту. И может быть легко найдена, например, с помощью метода комплексных амплитуд.

Или можно поступить иначе. Подставим в уравнение в качестве искомой синусоидальную функцию с неизвестной амплитудой и фазой. То есть, вынужденную составляющую тока (установившуюся реакцию на внешнее воздействие) будем искать в виде $$ \begin i_2 = I \sin(\omega t + \alpha), \label \end $$ здесь I, \( \alpha \) — пока ещё неизвестные амплитуда и начальная фаза искомого решения. Для того чтобы найти эти величины, подставим выражение для i2 в качестве i в уравнение (\ref). С учётом (\ref) получим $$ \begin U \sin(\omega t + \phi) = IR \sin(\omega t + \alpha) + I \omega L \cos(\omega t + \alpha). \label \end $$

Как известно, выражение вида $$ a \sin x + b \cos x, $$ где a, b — произвольные постоянные, всегда можно преобразовать следующим образом: $$ a \sin x + b \cos x = \sqrt \sin(x + \psi), $$ где \(\psi\) определяется из условий $$ \cos \psi = a / \sqrt, \\ \sin \psi = b / \sqrt, $$ а если одновременно a = 0 , b = 0 , то \(\psi\) — любое число. Обосновать это преобразование чрезвычайно просто, подробнее об этом можно посмотреть в статье «Тригонометрические функции и формулы».

Применяя данное преобразование для правой части уравнения (\ref), получаем уравнение вида $$ \begin U \sin(\omega t + \phi) = I \sqrt^2 L^2> \sin(\omega t + \alpha + \beta), \label \end $$ где $$ \begin \cos \beta = \frac R <\sqrt^2 L^2>>, \\ \sin \beta = \frac <\omega L><\sqrt^2 L^2>>. \label \end $$ Равенство (\ref) должно выполняться в любой момент времени t, что возможно, если только одновременно выполняются два условия: $$ \begin U = I \sqrt^2 L^2>, \\ \phi = \alpha + \beta \end $$ что можно также записать как $$ I = \frac U <\sqrt^2 L^2>>, \\ \alpha = \phi — \beta. $$ Величина \(\beta\) определяется из равенств (\ref) и представляет собой отставание по фазе тока от напряжения в рассматриваемой RL цепи. Как видим из (\ref), это отставание находится в пределах 0..\(\pi/2\). Если катушка индуктивности высокодобротная, т.е. $$ \omega L \gg R, $$ то отставание тока по фазе близко (чуть меньше) к четверти периода: $$ \beta \approx \pi/2. $$

Итак, возвращаясь к искомой функции (\ref), запишем $$ i_2 = I \sin(\omega t + \phi — \beta) $$ или $$ i_2 \approx I \sin(\omega t + \phi — \pi/2) $$ для высокодобротной катушки. И в том, и в другом случае под I подразумевается амплитуда тока через индуктивность в установившемся режиме, т.е. $$ I = \frac U <\sqrt^2 L^2>> $$

Далее будем рассматривать только интересующий нас сейчас случай высокодобротной катушки, а значит $$ i_2 \approx I \sin(\omega t + \phi — \pi/2) $$ или $$ i_2 \approx — I \cos(\omega t + \phi). $$ Итак, мы нашли свободную и вынужденную составляющие реакции (тока в цепи) на воздействие (синусоидальное напряжение источника), а значит, можем записать общее решение для тока через индуктивность: $$ i = i_1 + i_2 \approx A e^ <-\frac R L t>— I \cos(\omega t + \phi). $$ Постоянную A найдём из начальных условий. Если сделать вполне естественное предположение о том, что до подключения индуктивности к источнику ток в индуктивности отсутствовал, то можем записать $$ i(0) = 0, \\ A — I \cos \phi \approx 0, \\ A \approx I \cos \phi. $$

Тогда окончательно получаем, что ток в катушке $$ i \approx (I \cos \phi) e^ <-\frac R L t>— I \cos(\omega t + \phi). $$ То есть, имеем переменную, синусоидальную составляющую тока с амплитудой I (ток в катушке в установившемся режиме) и затухающую по экспоненте составляющую с наибольшим по модулю значением \( |I \cos \phi| \).

Можно показать, что для катушки с высокой добротностью, в течение нескольких первых периодов колебаний источника, выполняется условие $$ e^ <-\frac R L t>\approx 1, $$ а значит для некоторого промежутка времени, непосредственно следующего за моментом подключения индуктивности к источнику, выполняется соотношение $$ i \approx I \cos \phi — I \cos(\omega t + \phi). $$ Тогда пиковое (наибольшее по абсолютной величине) значение тока i, составляет $$ |i|_ \approx I |\cos \phi| + I = I (|\cos \phi| + 1). $$ Как видим, оно зависит от начальной фазы источника переменного напряжения. Может достигать 2 I, т.е. двойного значения амплитуды в установившемся режиме (рис. %img:t0), при условии, что \( \phi = 0 \) или \( \phi = \pi \). Иначе говоря, если в момент подключения индуктивности, мгновенное напряжение источника проходит через 0.


Рис. %img:t0

Если же подключение происходит в момент достижения напряжением источника амплитудного значения, переходный процесс отсутствует, и цепь сразу начинает работать в установившемся режиме (рис. %img:t2). Очевидно, что в таком случае пиковое значение тока равно просто амплитуде тока в установившемся режиме.


Рис. %img:t2

Наконец, если в момент подключения индуктивности, мгновенное напряжение источника не равно нулю, но и не достигло амплитудного значения, то будет наблюдаться переходный процесс, во время которого пиковое значение тока будет больше I, но меньше 2I, где I — амплитуда тока в установившемся режиме (рис. %img:t3).


Рис. %img:t3

На рисунках %img:t0, %img:t2, %img:t3 внизу в условном масштабе изображены графики напряжения источника, которые помогают проследить влияние начальной фазы напряжения на протекание переходного процесса в цепи.

Ссылки *

* Если ссылка не работает, не забывайте о существовании веб-архива и поисковых систем.

Источник

Оцените статью
Adblock
detector