Расчет резистора в цепи реле

Содержание
  1. «Маленькие хитрости». Часть 4.
  2. Закон Ома.
  3. Как рассчитать сопротивление гасящего резистора.
  4. Как рассчитать мощность гасящего резистора.
  5. Как рассчитать напряжение падения на сопротивлении.
  6. Как рассчитать ток потребляемый устройством или цепью.
  7. Как рассчитать мощность устройства в Вт.
  8. Как рассчитать длину радиоволны.
  9. Как рассчитать частоту радиосигнала.
  10. Как рассчитать номинальную выходную мощность звуковой частоты.
  11. Как рассчитать сопротивление двух параллельно включенных резисторов.
  12. Как рассчитать сопротивление более двух включенных параллельно резисторов.
  13. Как рассчитать емкость включенных параллельно двух или более конденсаторов.
  14. Как рассчитать емкость включенных последовательно двух конденсаторов.
  15. Как рассчитать емкость включенных последовательно более двух конденсаторов.
  16. Выбор указательных реле серии РЭУ-11
  17. Выбор шунтирующих резисторов в цепях постоянного оперативного тока
  18. Искрогасящие цепи
  19. 7 комментариев: Искрогасящие цепи

«Маленькие хитрости». Часть 4.

Формулы для радиолюбительских расчетов.

Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!

Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.

Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.

Закон Ома.

Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:

Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).

Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.

Как рассчитать сопротивление гасящего резистора.

Сопротивление гасящего резистора рассчитывают по формуле: R= U /I

Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).

Как рассчитать мощность гасящего резистора.

Расчет мощности гасящего резистора проводят по формуле: P=I 2 R

Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).

Как рассчитать напряжение падения на сопротивлении.

Напряжение падения на сопротивлении можно рассчитать по формуле: Uпад . =RI

Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).

Как рассчитать ток потребляемый устройством или цепью.

Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U

Где P– мощность устройства (Вт), U– напряжение питания устройства (В).

Как рассчитать мощность устройства в Вт.

Рассчитать мощность устройства в Вт. можно по формуле: P=IU

Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).

Как рассчитать длину радиоволны.

Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ

Где ƒ-частота в килогерцах, ƛ- длинна волны в метрах.

Как рассчитать частоту радиосигнала.

Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ

Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.

Как рассчитать номинальную выходную мощность звуковой частоты.

Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U 2 вых./ R ном .

Где U 2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.

И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.

Как рассчитать сопротивление двух параллельно включенных резисторов.

Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)

Где R1 и R2 — сопротивление первого и второго резистора соответственно (Ом).

Как рассчитать сопротивление более двух включенных параллельно резисторов.

Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…

Где R1, R2, Rn — сопротивление первого, второго и последующих резисторов соответственно (Ом).

Как рассчитать емкость включенных параллельно двух или более конденсаторов.

Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn

Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).

Как рассчитать емкость включенных последовательно двух конденсаторов.

Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C1 C2/C1+C2

Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).

Как рассчитать емкость включенных последовательно более двух конденсаторов.

Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле: 1/C=1/C1+1/C2+1/Cn

Где C1, C2 и Cn — емкость первого, второго и последующих конденсаторов (мФ).

Рекомендуем посмотреть:

Источник

Выбор указательных реле серии РЭУ-11

В данной статье я хотел бы рассказать как нужно выбирать указательные реле РЭУ-11 в схемах вызывной сигнализации.

Основные требования к работе выходных и указательных реле серии РЭУ-11:

  • при снижении напряжения оперативного тока до 80% номинального, должно обеспечиваться срабатывание соединенных последовательно выходных промежуточных и указательных реле. При этом падение напряжения в сопротивлении указательных реле должно быть менее 0,1*Iном;
  • при напряжении оперативного тока 0,8*Uном. должно обеспечиваться срабатывание указательных реле устройств РЗА, одновременно действующих без выдержки времени на общие выходные реле;
  • при напряжении оперативного тока 1,1*Uном ток в указательном реле не должен превышать длительно допустимый, трехкратный для реле серии РЭУ-11.

Приведенные выше требования характеризуются следующими соотношениями:

Ток в выходных реле при номинальном напряжении оперативного тока:

где:

  • rвр – сопротивление выходных реле;
  • rур – сопротивление указательных реле;

Коэффициент чувствительности указательного реле серии РЭУ-11 при напряжении оперативного тока 0,8*Uном:

Кратность тока в указательном реле при напряжении оперативного тока 1,1*Uном:

Падение напряжения в сопротивлении указательного реле при пониженном напряжении оперативного тока:

Как показывают расчеты, одновременная работа более двух указательных реле не обеспечивается, поэтому схемы выходных устройств РЗА должны быть построены так, чтобы по возможности исключалась вероятность одновременного срабатывания более двух указательных реле.

Как было указано, результирующее сопротивление выходных цепей должно быть не более 4 кОм, следовательно, исходя из того, что падение напряжения на сопротивлении указательного реле должно быть менее 0,1Iном, его сопротивление не должно превышать 0,1*4000/0,8=500 Ом, т.е целесообразно применить реле с номинальным током: 0,025 А; 0,05 А; 0,06 А и 0,08 А, имеющих сопротивление ниже 500 Ом.

При выборе указательных реле РЭУ-11 в схеме вызывной сигнализации следует учитывать еще одно условие, которое исходит из особенностей работы схемы: при поступлении сигнала сначала должно сработать реле KL, при этом указательное реле не должны срабатывать, т.е. ток в цепи должен быть не более 0,5*Iн.ур.

  • rпр – сопротивление промежуточного реле KL;
  • rур – сопротивление указательных реле;
  • Iнур – номинальный ток указательного реле;

Рассмотрим схемы использования указательных реле серии РЭУ-11 и шунтирующих резисторов, и в соответствии с этими схемами выберем параметры указательных реле и резисторов:

1. Выбираем параметры указательных реле РЭУ-11 и шунтирующих резисторов при срабатывании одновременно двух устройств РЗА. Схема представлена на рис.1.

Рис.1 — схема выбора указательных реле РЭУ-11 и шунтирующих резисторов при срабатывании одновременно двух устройств РЗА

Таблица 1 — Параметры указательных реле РЭУ-11 и шунтирующих резисторов при срабатывании одновременно двух устройств РЗА

2. Выбираем параметры указательных реле РЭУ-11 и шунтирующих резисторов в схеме вызывной сигнализации при срабатывании одновременно 2 сигнальных устройств. Схема представлена на рис.2.

Рис.2 — схема выбора указательных реле РЭУ-11 и шунтирующих резисторов в схеме вызывной сигнализации при срабатывании одновременно 2 сигнальных устройств

Таблица 2 — Параметры указательных реле РЭУ-11 и шунтирующих резисторов в схеме вызывной сигнализации при срабатывании одновременно 2 сигнальных устройств

Литература:
1. СО 34.35.655 Методические указания по наладке и проверке промежуточных, указательных реле и реле импульсной сигнализации. Союзтехэнерго. 1981 г.

Читайте также:  Где ставить реле давления до фильтра или после

Источник

Выбор шунтирующих резисторов в цепях постоянного оперативного тока

В этой статье я хотел бы рассказать, какие нужно выбирать шунтирующие резисторы, что бы уберечься от ложных срабатываний промежуточных реле с высоким сопротивлением обмоток(например, промежуточных реле R2…R4 фирмы Relpol, где сопротивление обмоток около 16,1 кОм при напряжении 220 В) в схемах РЗА и противоаварийной автоматики.

Когда же может возникнуть ложное срабатывание? А происходит оно, при замыкании на землю в цепях постоянного оперативного тока:

  • между управляющим контактом этого реле и его обмоткой;
  • при большой протяженности кабельной линии между управляющим контактом и обмоткой реле в любой точке положительного и отрицательного полюса.

Для того чтобы повысить надежность работы устройств РЗА рекомендуется руководствоваться требованиями противоаварийного циркуляра №Ц-10-87(Э) от 02.10.1987, хоть он и был издан в 1987 году, но на сегодняшний день он актуальность все еще не потерял. В данном циркуляре приводиться перечень мер по повышению надежности работы устройств РЗА с использованием реле РП-16, где сопротивление обмоток составляет около 22 кОм при напряжении 220 В, и реле РП-18 — 7 кОм при напряжении 110 В.

И так, чтобы повысить надежность работы устройств РЗА, требуется принять вот такие меры:

  • Зашунтировать обмотки реле с высоким сопротивлением обмоток в схемах релейной защиты и автоматики резистором с такими параметрами:- для реле с номинальным напряжением 220 В, применить резистор с сопротивлением 5,1 кОм;
    — для реле с номинальным напряжением 110 В, применить резистор с сопротивлением 1,2 кОм;
  • При параллельном соединении двух и более реле, шунтирующий резистор должен обеспечивать результирующее сопротивление:- при напряжении 220 В – не более 4 кОм;
    — при напряжении 110 В – не более 1 кОм.
  • Шунтирование реле с высоким сопротивлением обмоток необходимо производить также в тех случаях, когда они используются как реле-повторители блок-контактов и как реле положения «включено» и «отключено», если управляющие блок-контакты или электромагниты включения и отключения выключателей и реле располагается на разных панелях в удаленных местах, что, как правило, имеет место на ОРУ и других объектах.

Рекомендуемые параметры шунтирующих резисторов для этих схем, приведены на Рис.1 и Рис.2.

Рис.1 — Схема шунтирования реле-повторителей

Рис.2 — Схема шунтирования реле положения «включено» и «отключено»

Таблица — Рекомендуемые параметры шунтирующих резисторов

Резисторы следует принимать типа ПЭВ или аналог с допустимым отклонением сопротивления ±5%.

При сопротивлении резисторов R10 и R11 1000 Ом, устанавливаемым по типовым решениям, для исключения ложных срабатываний электромагнитов выключателей при закорачивании обмоток реле положения, сопротивление дополнительного шунтирующего резистора Rш принимать 5100 Ом, мощность рассеивания 25 Вт.

Шунтирование реле РП-16 и РП-18 (или аналогичных реле с небольшим током срабатывания) рассмотрено также, в схемах вызывной сигнализации с использованием указательных реле серии РЭУ-11).

Источник

Искрогасящие цепи

Влияние дуговых разрядов на стабильность работы контактов реле столь велико, что для инженера знание основ расчета и применения защитных схем является просто обязательным условием.

Искрогасящие цепи

Для уменьшения повреждения контактов дуговыми разрядами применяются:

  1. специальные реле с большими контактными промежутками (до 10 мм и более) и высокой скоростью выключения, обеспечиваемой сильными контактными пружинами;
  2. магнитный обдув контактов, реализуемый установкой постоянного магнита или электромагнита в плоскости контактного промежутка. Магнитное поле препятствует появлению и развитию дуги и эффективно оберегает контакты от обгорания;
  3. искрогасящие цепи, устанавливаемые параллельно контактам реле или параллельно нагрузке.

Первые два способа гарантируют высокую надежность за счет конструктивных мер при разработке реле. Внешних элементов защиты контактов при этом обычно не требуется, но специальные реле и магнитный обдув контактов достаточно экзотичны, дороги и отличаются большими размерами и солидной мощностью катушки (у реле с большим расстоянием между контактами сильные контактные пружины).

Промышленная электротехника ориентируется на недорогие стандартные реле, поэтому применение искрогасящих цепей является наиболее распространенным способом гашения дуговых разрядов на контактах.

Рис. 1. Эффективная защита существенно продлевает жизнь контактов:

Теоретически для гашения дуги можно использовать многие физические принципы, но на практике находят применение следующие эффективные и экономичные схемы:

  1. RС-цепи;
  2. обратные диоды;
  3. варисторы;
  4. комбинированные схемы, например, варистор + RС-цепь.

Защитные цепи можно включать:

  1. параллельно индуктивной нагрузке;
  2. параллельно контактам реле;
  3. параллельно контактам и нагрузке одновременно.

На рис. 1 показано типовое включение защитных схем при работе на постоянном токе.

Диодная схема (только для цепей постоянного тока)

Самая дешевая и широко применяемая схема для подавления напряжения самоиндукции. Кремниевый диод включается параллельно индуктивной нагрузке, при замыкании контактов и в установившемся режиме не оказывает никакого воздействия на работу схемы. При отключении нагрузки возникает напряжение самоиндукции, обратное по полярности рабочему напряжению, диод открывается и шунтирует индуктивную нагрузку.

Не следует считать, что диод ограничивает обратное напряжение на уровне прямого падения напряжения, равного 0,7-1 В. Вследствие конечного внутреннего сопротивления падение напряжения на диоде зависит от тока через диод. Мощные индуктивные нагрузки способны развивать импульсные токи самоиндукции до десятков ампер, что для мощных кремниевых диодов соответствует падению напряжения около 10-20 В. Диоды исключительно эффективно устраняют дуговые разряды и предохраняют контакты реле от обгорания лучше, чем любые другие схемы искрогашения.

Правила выбора обратного диода:

  1. рабочий ток и обратное напряжение диода должны быть сравнимы с номинальным напряжением и током нагрузки. Для нагрузок с рабочим напряжением до 250 ѴDС и рабочим током до 5 А вполне подходит распространенный кремниевый диод 1N4007 с обратным напряжением 1000 ѴDС и максимальным импульсным током до 20 А;
  2. выводы диода должны быть как можно короче;
  3. диод следует припаивать (привинчивать) непосредственно к индуктивной нагрузке, без длинных соединительных проводов – это улучшает ЭМС при процессах коммутации.

Достоинства диодной схемы:

  1. дешевизна и надежность;
  2. простой расчет;
  3. предельно достижимая эффективность.
  1. диоды увеличивают время выключения индуктивных нагрузок в 5-10 раз, что очень нежелательно для нагрузок типа реле или контакторов (контакты размыкаются медленнее, что способствует их обгоранию), при этом диодная защита работает только в цепях постоянного тока.

Если последовательно с диодом включить ограничительное сопротивление, то влияние диодов на время выключения уменьшается, но дополнительные резисторы обуславливают более высокие обратные напряжения, чем только защитные диоды (на резисторе падает напряжение согласно закону Ома).

Стабилитроны (для цепей переменного и постоянного тока)

Вместо диода параллельно нагрузке устанавливается стабилитрон, а для цепей переменного тока два встречно-последовательно включенных стабилитрона. В такой схеме обратное напряжение ограничивается стабилитроном до напряжения стабилизации, что несколько снижает влияние искрозащитной цепи на время выключения нагрузки.

Учитывая внутреннее сопротивление стабилитрона, обратное напряжение на мощных индуктивных нагрузках будет больше напряжения стабилизации на величину падения напряжения на дифференциальном сопротивлении стабилитрона.

Выбор стабилитрона для схемы защиты:

  1. выбирается желаемое напряжение ограничения;
  2. выбирается необходимая мощность стабилитрона с учетом пикового тока, развиваемого нагрузкой при возникновении напряжения самоиндукции;
  3. проверяется истинное напряжение ограничения – для этого желателен эксперимент, а при измерении напряжения удобно пользоваться осциллографом.
  1. меньше задержка выключения, чем в диодной схеме;
  2. стабилитроны можно применять в цепях любой полярности;
  3. стабилитроны для маломощных нагрузок дешевы;
  4. схема работает на переменном и постоянном токе.
  1. меньше эффективность, чем в диодной схеме;
  2. для мощных нагрузок требуются дорогие стабилитроны;
  3. для очень мощных нагрузок схема со стабилитронами технически нереализуема.
Читайте также:  Реле эланг термо контроль инструкция по настройке

Варисторная схема (для цепей переменного и постоянного тока)

Металл-оксидный варистор имеет вольт-амперную характеристику, похожую на биполярный стабилитрон. До момента приложения к выводам напряжения ограничения варистор практически отключен от схемы и характеризуется только микроамперными токами утечки и внутренней емкостью на уровне 150-1000 пФ. При увеличении напряжения варистор начинает плавно открываться, шунтируя своим внутренним сопротивлением индуктивную нагрузку.

При очень небольших размерах варисторы способны отводить большие импульсные токи: для варистора диаметром 7 мм разрядный ток может быть равен 500-1000 А (длительность импульса менее 100 мкс).

Расчет и монтаж варисторной защиты:

  1. задаются безопасным напряжением ограничения на индуктивной
    нагрузке;
  2. рассчитывается или измеряется ток, отдаваемый индуктивной нагрузкой при самоиндукции, для определения требуемого тока варистора;
  3. по каталогу подбирается варистор на требуемое напряжение ограничения, при необходимости варисторы можно устанавливать последовательно для подбора нужного напряжения;
  4. необходимо проверить: варистор должен быть закрыт во всем диапазоне рабочих напряжений на нагрузке (ток утечки менее 10-50 мкА);
  5. варистор необходимо монтировать на нагрузке по правилам, указанным для диодной защиты.

Достоинства варисторной защиты:

  1. варисторы работают в цепях переменного и постоянного тока;
  2. нормированное напряжение ограничения;
  3. незначительное влияние на задержку выключения;
  4. варисторы дешевы;
  5. варисторы идеально дополняют защитные RС-цепи при работе с высокими напряжениями на нагрузке.

Недостаток варисторной защиты:

  1. при применении только варисторов защита контактов реле от электрической дуги существенно хуже, чем в диодных цепях.

RС-цепи (для постоянного и переменного тока)

В отличие от диодных и варисторных схем RС-цепи можно устанавливать как параллельно нагрузке, так и параллельно контактам реле. В некоторых случаях нагрузка физически недоступна для монтажа на ней искрогасящих элементов, и тогда единственным способом защиты контактов остается шунтирование контактов RС-цепями.

В основе принципа действия RС-цепи лежит тот факт, что напряжение на конденсаторе не может изменяться мгновенно. Напряжение самоиндукции носит импульсный характер, причем фронт импульса для типичных электротехнических устройств имеет длительность на уровне 1 мкс. При приложении такого импульса к RС-цепи напряжение на конденсаторе начинает возрастать не мгновенно, а с постоянной времени, определяемой значениями R и С.

Если считать внутреннее сопротивление источника питания равным нулю, то подключение RС-цепи параллельно нагрузке эквивалентно включению RС-цепи параллельно контактам реле. В этом смысле принципиального различия в установке элементов искрогасящей цепочки для разных схем включения нет.

RС-цепь параллельно контактам реле

Конденсатор (см. рис. 2) при размыкании контактов реле начинает заряжаться. Если время заряда конденсатора до напряжения зажигания дуги на контактах выбирается большим, чем время расхождения контактов на расстояние, при котором дуга не может возникнуть, то контакты полностью защищены от появления дуги. Этот случай идеален и на практике маловероятен. В реальных случаях RС-цепь помогает при размыкании цепи поддерживать на контактах реле низкое напряжение и тем самым ослаблять влияние дуги.

Рис. 2. защитные элементы можно включить как параллельно контактам, так и параллельно нагрузке:

При включении только одного конденсатора параллельно контактам реле схема защиты тоже в принципе работает, но разряд конденсатора через контакты реле при их замыкании приводит к броску тока через контакты, что нежелательно. RС-цепь в этом смысле оптимизирует все переходные процессы как при замыкании, так и при размыкании контактов.

Проще всего пользоваться универсальной номограммой, показанной на рис. 3. По известным напряжению источника питания U и току нагрузки I находят две точки на номограмме, после чего между точками проводится прямая линия, показывающая искомое значение сопротивления R. Значение емкости С отсчитывается по шкале рядом со шкалой тока I. Номограмма дает разработчику достаточно точные данные, при практической реализации схемы необходимо будет подобрать ближайшие стандартные значения для резистора и конденсатора RС-цепи.

Рис. 3. Самая удобная и точная номограмма для определения параметров защитной RС цепи (а этому графику уже более 50 лет!)

Выбор конденсатора и резистора RС-цепи

Конденсатор следует применять только с пленочным или бумажным диэлектриком, керамические конденсаторы для высоковольтных искрозащитных цепей непригодны. При выборе резистора необходимо помнить, что на нем при переходном процессе рассеивается большая мощность. Можно рекомендовать применять для RС-цепей резисторы мощностью 1-2 Вт, причем обязательно следует проверить, рассчитан ли резистор на высокое импульсное напряжение самоиндукции. Лучше всего применять проволочные резисторы, но хорошо работают и металлопленочные или углеродные с заливкой керамическими компаундами.

  1. хорошее гашение дуги;
  2. отсутствие влияния на время выключения индуктивной нагрузки.

Особенности RC-цепи: необходимость применения высококачественных конденсатора и резистора. В целом же применение RC-цепей всегда экономически оправдано.

При установке искрогасящей цепи параллельно контактам на переменном токе при разомкнутых контактах реле через нагрузку будет протекать ток утечки, определяемый импедансом RС-цепи. Если нагрузка не допускает протекания тока утечки или это нежелательно по схемотехническим соображениям и в целях безопасности персонала, то необходимо устанавливать RС-цепь параллельно нагрузке.

Комбинация RС-цепи и диодной схемы

Такая схема (иногда называемая DRС-цепью) предельна по своей эффективности и позволяет свести к нулю все нежелательные эффекты от воздействия электрической дуги на контакты реле.

  1. электрический ресурс реле приближается к своему теоретическому пределу.
  1. диод вызывает значительную задержку выключения индуктивной нагрузки.

Комбинация RС-цепи и варистора

Если вместо диода установить варистор, то схема по параметрам будет идентична обычной RС-искрогасящей цепи, но ограничение варистором величины напряжения самоиндукции на нагрузке позволяет применять менее высоковольтные и более дешевые конденсатор и резистор.

RС-цепь параллельно нагрузке

Применяется там, где нежелательна или невозможна установка RС-цепи параллельно контактам реле. Для расчета предлагаются следующие ориентировочные значения элементов:

  1. С = 0,5-1 мкФ на 1 А тока нагрузки;
  2. R = 0,5-1 Ом на 1 В напряжения на нагрузке;
  3. R = 50-100% от сопротивления нагрузки.

После расчета номиналов R и С необходимо проверить возникающую при этом дополнительную нагрузку контактов реле при переходном процессе (заряде конденсатора), как это было описано выше.

Приведенные значения R и С не являются оптимальными. Если требуется максимально полная защита контактов и реализация максимального ресурса реле, то необходимо провести эксперимент и опытным путем подобрать резистор и конденсатор, наблюдая переходные процессы с помощью осциллографа.

Достоинства RC-цепи параллельно нагрузке:

  1. хорошее подавление дуги;
  2. нет токов утечки в нагрузку через разомкнутые контакты реле.
  1. при токе нагрузки более 10 А большие значения емкости приводят к необходимости установки относительно дорогих и больших по габаритам конденсаторов;
  2. для оптимизации схемы желательна экспериментальная проверка и подбор элементов.

На фотографиях показаны осциллограммы напряжения на индуктивной нагрузке в момент размыкания питания без шунтирования (рис. 4) и с установленной RСЕ цепью (рис. 5). Обе осциллограммы имеют вертикальный масштаб 100 вольт/деление.

Рис. 4. Правильно подобранная защитная RСЕ цепочка полностью устраняет переходный процесс

Рис. 5. Отключение индуктивной нагрузки вызывает очень сложный переходный процесс

Специального комментария здесь не требуется, эффект от установки искрогасящей цепи виден сразу. Бросается в глаза процесс генерации высокочастотной высоковольтной помехи в момент размыкания контактов.

Фотографии взяты из университетского отчета по оптимизации RС-цепей, установленных параллельно контактам реле. Автор отчета провел сложный математический анализ поведения индуктивной нагрузки с шунтом в виде RС-цепи, но в итоге рекомендации по расчету элементов были сведены к двум формулам:

где С – емкость RС-цепи, мкФ; I – рабочий ток нагрузки, А;

где Ео – напряжение на нагрузке; В, I – рабочий ток нагрузки, А; R – сопротивление RС-цепи, Ом.

Проверим расчет: рассчитать RС-цепь для индуктивной нагрузки с рабочим током I = 1 А и напряжением источника питания Ео = 220 ѴAС.

Читайте также:  Реле вентилятора охлаждения тойота кариб

Ответ: С = 0,1 мкФ, R = 20 Ом. Эти параметры отлично согласуются с номограммой, приведенной ранее.

В заключение познакомимся с таблицей из этого же отчета, где приведены практически измеренные напряжение и время задержки для различных искрогасящих цепей. В качестве индуктивной нагрузки служило электромагнитное реле с напряжением катушки 28 ѴDС/1 W, искрогасящая цепь устанавливалась параллельно катушке реле.

Шунт параллельно катушке реле Пиковое напряжение выброса на катушке реле (% от рабочего напряжения) Время выключения реле, мс (% от паспортного значения)
Без шунта 950 (3400 %) 1,5 (100 %)
Конденсатор 0,22 мкФ 120 (428 %) 1,55 (103 %)
Стабилитрон, рабочее напряжение 60 В 190 (678 %) 1,7 (113 %)
Диод + резистор 470 Ом 80 (286 %) 5,4 (360 %)
Варистор, напряжение ограничения 60 В 64 (229 %) 2,7 (280 %)

Индуктивные нагрузки и электромагнитная совместимость (ЭМС)

Требования ЭМС являются обязательным условием работы электротехнического оборудования и понимаются как:

  1. способность оборудования нормально работать в условиях воздействия мощных электромагнитных помех;
  2. свойство не создавать при работе электромагнитные помехи более предписанного стандартами уровня.

Реле малочувствительно к высокочастотным помехам, но присутствие мощных электромагнитных полей вблизи катушки реле влияет на напряжение включения и выключения реле. При установке реле рядом с трансформаторами, электромагнитами и электродвигателями обязательно требуется экспериментальная проверка правильности срабатывания и выключения реле. При установке большого количества реле вплотную на одной монтажной панели или на печатной плате также имеется взаимовлияние работы одного реле на напряжение включения и выключения остальных реле. В каталогах иногда даются указания на минимальное расстояние между однотипными реле, гарантирующие их нормальную работу. При отсутствии таких указаний можно пользоваться эмпирическим правилом, по которому расстояние между центрами катушек реле должно быть не менее 1,5 от величины их диаметра. При необходимости плотного монтажа реле на печатной плате требуется опытная проверка взаимовлияния реле.

Электромагнитное реле может создавать мощные помехи, особенно при работе с индуктивными нагрузками. Показанный на рис. 4 высокочастотный сигнал является мощной помехой, способной повлиять на нормальную работу чувствительного электронного оборудования, работающего рядом с реле частота помехи колеблется от 5 до 50 МГц, а мощность этой помехи составляет несколько сотен мВт, что совершенно недопустимо по современным нормам ЭМС. Искрогасящие цепи позволяют довести уровень помех от релейного оборудования до предписываемого стандартами безопасного уровня.

Применение реле в заземленных металлических корпусах положительно сказывается на ЭМС, но необходимо помнить, что при заземлении металлического корпуса у большинства реле снижается напряжение изоляции между контактами и катушкой.

Изоляция между контактами реле

Между разомкнутыми контактами реле имеется промежуток, зависящий от конструкции реле. Воздух в промежутке (или инертный газ для газонаполненных реле) выполняет роль изолятора. Предполагается, что изолирующие материалы корпуса и контактной группы реле характеризуются более высокими пробивными напряжениями, чем воздух. При отсутствии загрязнений между контактами рассмотрение изоляционных свойств контактных групп можно ограничить свойствами только воздушного зазора.

На рис. 6 (немного ниже в статье) показана зависимость пробивного напряжения от величины расстояния между контактами реле. В каталогах можно найти несколько вариантов значений предельного напряжения между контактами, а именно:

  1. предельное значение постоянно приложенного к двум контактам напряжения;
  2. импульсное значение напряжения изоляции (surge voltage);
  3. предельное значение напряжения между контактами в течение определенного времени (обычно 1 минута, за это время ток утечки не должен превысить 1 или 5 мА при указанной величине напряжения).

Если речь идет об импульсном напряжении изоляции, то импульс представляет собой стандартный тестовый сигнал ІЕС-255-5 с временем нарастания до пикового значения 1,2 мкс и временем спада до 50% амплитуды 50 мкс.

Рис. 6. Чем контакты реле дальше друг от друга, тем пробивное напряжение выше: но при этом выше и надежность реле

Если разработчику необходимо реле с особыми требованиями к изоляции контактов, то получить информацию о соответствии этим требованиям можно либо у фирмы-производителя, либо путем проведения самостоятельного тестирования. В последнем случае необходимо помнить, что производитель реле не будет нести ответственности за полученные таким способом результаты измерений.

Материалы для контактов реле

От материала контактов зависят такие параметры самих контактов и реле в целом, как:

  1. нагрузочная способность по току, то есть способность эффективного отвода тепла от точки контакта;
  2. возможность коммутации индуктивных нагрузок;
  3. переходное сопротивление контакта;
  4. предельная температура окружающей среды при эксплуатации;
  5. устойчивость материала контактов к миграции, особенно при коммутации индуктивных нагрузок на постоянном токе;
  6. устойчивость материала контактов к испарению. Испаряющийся металл поддерживает развитие электрической дуги и ухудшает изоляцию при осаждении металла на изоляторы контактов и корпус реле;
  7. устойчивость контактов к механическому износу;
  8. эластичность контактов для поглощения кинетической энергии и предотвращения чрезмерного дребезга;
  9. устойчивость металла контактов к воздействию корродирующих газов из окружающей среды.

Рис. 7. Каждый материал рассчитан на работу контактов в определенном диапазоне токов, но может с осторожностью применяться и для коммутации слабых сигналов

Некоторые полезные качества материалов не исключают друг друга, например, хорошие проводники тока всегда обладают высокой теплопроводностью. При этом хорошие проводники с низким удельным сопротивлением обычно слишком мягкие и легко поддаются износу.

Температура плавления выше у специальных контактных сплавов (например, AgNi или AgSnO), но такие материалы совсем не подходят для коммутации микротоков.

В итоге разработчик реле останавливается на определенном компромиссе между качеством, ценой и габаритами реле. Этот компромисс привел к стандартизации областей применения различных контактов реле, как показано на рис. 7. Области применения различных материалов для контактов достаточно условны, но разработчик должен понимать, что при работе контактов на границе «выделенного» для них диапазона токов и напряжений может потребоваться экспериментальная проверка надежности такого применения. Эксперимент очень прост и заключается в измерении переходного сопротивления контактов для партии однотипных реле, причем желательно тестировать не только что сошедшие с конвейера реле, а прошедшие транспортировку и полежавшие некоторое время на складе. Оптимальным сроком «вылеживания» на складе является 3-6 месяцев, за это время нормализуются процессы старения в пластиках и соединениях металлпластик.

7 комментариев: Искрогасящие цепи

Имейте в виду, что шунтирующий контакты реле конденсатор пропускает переменку.
У меня таким образом светодиодный прожектор коммутируется – так вот от этой утечки драйвера СД периодически запускались по мере накопления напряжения – всем известная проблема “вспышек” энергосберегаек через выключатели “с неонкой”. Лично я “задавил” проблему зашунтировав уже сам драйвер резистором на несколько килоом – он не даёт входному кондёру драйвера накапливать заряд от паразитного тока.

Теперь стало понятно,почему падают спутники-из-за:” Рис. 3. Самая удобная и точная номограмма для определения параметров защитной RС цепи (а этому графику уже более 50 лет!)”.Посмотрите на ось C-I. Как-то непонятны: значения ёмкости(то падают,то увеличиваются) и количество делений между значениями(то 10, то 11).

“Если нагрузка не допускает протекания тока утечки или это нежелательно по схемотехническим соображениям и в целях безопасности персонала, то необходимо устанавливать RС-цепь параллельно нагрузке.”

“В заключение познакомимся с таблицей из этого же отчета, где приведены практически измеренные напряжение и время задержки для различных искрогасящих цепей. В качестве индуктивной нагрузки служило электромагнитное реле с напряжением катушки 28 ѴDС/1 W, искрогасящая цепь устанавливалась параллельно катушке реле.”

Народ, ничего не смущает в этом трактате?

А подписи под рисунками 4 и 5 правильные? Такое впечатление, что осциллограммы надо поменять местами.

Источник

Оцените статью
Adblock
detector