Реверсивный шип постоянного напряжения три способа управления

Способы управления ШИП и характеристики ЭП

Существует три способа управления ШИП:

— симметричный способ управления;

— несимметричный способ управления;

— комбинированное (поочередное) управление.

Симметричный способ управления(см. рис. 50, б и в).При этом способе управления импульсы управления поступают на все четыре транзистора мостовой схемы, причем транзисторы одной диагонали моста (VT1, VT4 или VT2, VT3) управляются одинаковыми знакопеременными импульсами управления (uу1=uу4 или uу2=uу3). Сигналы управления uу2, uу3 находятся в противофазе сигналам управления uу1, uу4. Относительная продолжительность включенного состояние транзисторов VT1, VT4 cоставляет γ, а транзисторов VT2, VT3 – t2/Т=(Тt1)/T=1-γ.

Параметр γ=t1/Тназывается коэффициентом скважности. Напряжение на обмотке якоря двигателя положительно при работе транзисторов VT1, VT4 и отрицательно при работе транзисторов VT2, VT3. При симметричном способе управления напряжении на выходе ШИП имеет двухполярную форму. Среднее значение выходного напряжения ШИП равно нулю при γ=0,5, т.е. при t1=t2. При включении транзисторов VT1, VT4 ток обмотки якоря i2 нарастает (интервалы 123, рис.50, в). В точке 3 транзисторы VT1, VT4 закрываются. Двигатель на интервале (1-γ)Т работает в режиме противовключения; возникающий при этом тормозной момент уменьшает скорость вращения двигателя.

Уравнения равновесия напряжения обмотки якоря для двух рассматриваемых интервалов времени

Среднее значение тока якоря

.

Выражение механической характеристики электропривода

Uп – напряжение источника питания ШИП;

Ω0 =Uп/ kе – угловая скорость вращения двигателя в режиме холостого хода;

Rя – активное сопротивление обмотки якоря;

Се– конструктивный коэффициент двигателя.

На рис.51, а приведено семейство электромеханических характеристик ν=f(Iя), где

ν= Ω/Ω0 ном – относительная угловая скорость или относительная частота вращения. Электромеханические характеристики электропривода постоянного тока ν=f(Iя) линейны и непрерывны в смежных квадрантах. Штриховыми линиями на рис. 51, а показана область прерывистых токов якоря.

Кроме отмеченного достоинства ЭП с ШИП при двухполярном выходном напряжении отличается хорошими динамическими и регулировочными характеристиками и простотой схемы управления. Его недостатками являются большая глубина пульсаций напряжения якоря и тока якоря, повышенные потери в магнитопроводе якоря и ухудшенные условия коммутации.

ЭП с ШИП применяются в маломощных ЭП с частыми пусками, торможениями и реверсами.

Несимметричный способ управления. Временные диаграммы, поясняющие этот способ, приведены на рис.50, в и г. При несимметричном способе управления переключаются лишь два транзистора из четырех транзисторов мостовой схемы. Из двух других оставшихся транзисторов один должен быть постоянно закрыт, а другой – постоянно открыт. Рассмотрим случай, когда переключаются транзисторы VT1 и VT2, транзистор VT3 заперт, а транзистор VT4 открыт (см. рис.50, г). Напряжение на якоре двигателя при этом имеет вид однополярных широтно– модулированных повторяющихся импульсов (см. рис.49, д), частота следования которых равна частоте импульсов управления uу(t), подаваемых на базы транзисторов схемы. Преобразователь в этом случае работает в режиме однополярного выходного напряжения.

При включении транзистора VT1 на интервалах 1–2–3 (см. рис. 52, д) машина работает в двигательном режиме, развивая противо – ЭДС вращения Ея Е ток якоря в интервале 3-5 (см. рис.52, д) будет протекать по внутреннему контуру, образованному диодом VD2 и транзистором VT4 (см. рис.52, б). Электромагнитная энергия, запасенная индуктивностью Lя, на интервале 35 преобразуется в механическую энергию.

На интервале 56 (см. рис.52, д) ток якоря меняет свое направление и протекает по контуру, образованному транзистором VT2 и диодом VD4, под воздействием ЭДС двигателя Ея (см. рис.52, в). Механическая энергия преобразуется в электрическую энергию, часть которой рассеивается на активном сопротивлении замкнутого контура (на рис. 52, в это сопротивление не показано), а другая часть этой энергии запасается в индуктивности обмотки якоря Lя. Переключение транзисторов VT1 и VT2 в исходное состояние происходит в точке 6 (см. рис. 52, д).

Так как перед этим ток в обмотке якоря протекал в отрицательном направлении, то после закрытия транзистора VT2 этот ток будет протекать под воздействием ЭДС самоиндукции еL будет протекать через диоды VD1 и VD4 в направлении, противоположном направлению напряжения источника питания Uп (см. рис. 52, г). Происходит процесс рекуперации энергии. Если ШИП питается от сети переменного тока через неуправляемый выпрямитель, то из-за односторонней проводимости и неуправляемости выпрямителя это энергия не может быть передана в сеть переменного тока, а может быть передана только конденсатору фильтра Сф, напряжение на котором начнет возрастать. По окончании процесса будем иметь эквивалентную схему, изображенную на рис. 52, д.

Для разряда электрической энергии, запасенной конденсатором, параллельно ему следует установить специальное разрядное устройство, представляющее собой последовательно соединенные резистор и транзисторный ключ. Это устройство часто называют «чоппер». При возрастании напряжения конденсатора выше допустимого уровня система управления подает сигнал на базу транзистора, что приводит к открытию транзистора и разряду конденсатора на разрядный резистор.

Механические характеристики ЭП в режиме питания однополярными импульсами выходного напряжения ШИП располагаются во всех четырех квадрантах системы координат (см. рис. 51, б). Отключенному состоянию двигателя соответствует режим при γ=0 для транзисторов VT1 и VT3. Для изменения направления вращения двигателя необходимо изменить алгоритм управления ШИП – поменять импульсы транзисторов VT1 ↔VT3 и VT2↔ VT4.

Глубина пульсаций тока якоря при несимметричном способе управления в два раза меньше, чем при симметричном способе управления ШИП. Это достоинство несимметричного способа управления. Недостатком несимметричного способа управления является ограничение темпа торможения и реверсирования, а также неодинаковые условия работы транзисторов.

Комбинированный (поочередный) способ управления ШИП. Приэтом способе управления работа транзисторов одинакова, благодаря тому, что независимо от знака сигнала управления в состоянии переключения находятся все четыре транзистора, причем частота переключения каждого транзистора вдвое меньше частоты широтно- импульсного однополярного напряжения, подводимого к якорю двигателя. Пары транзисторов VT1, VT2 и VT3, VT4 управляются знакопеременными широтно — модулированным импульсами противоположной полярности, при этом импульсы управления транзисторов VT3, VT4 являются противофазными по отношению к импульсам управления транзисторов VT1, VT2 на частоте их следования fу=fu/2 (см. рис.53, а).

Читайте также:  Стабилизатор напряжения стбн 5000 электрическая схема

Форма кривых и величина напряжения и тока якоря при этом способе переключения транзисторов при одинаковом значении коэффициента γ равны соответствующим значениям при втором способе управления (т.е. при несимметричном способе управления). Идентичными являются и энергетические состояния схемы переключения транзисторов VT1 и VT2 на интервале 0 2 , (122)

в которых дополнительно показана зависимость магнитного пото­ка от тока якоря (возбуждения) Ф(I), a R = Rя + R+Rд.

Магнитный поток и ток связаны между собой кривой намагни­чивания 5 (см. рис.54, б), описав которую с помощью приближенного аналити­ческого выражения, можно получить формулы для характеристик двигателя.

В простейшем случае кривую намагничивания представляют прямой линией 4. Такая аппроксимация по существу означает пре­небрежение насыщением магнитной системы двигателя и позволя­ет представить зависимость потока от тока следующим образом:

φ- угол наклона касательной к кривой намагничивания двигателя (см. рис.54, б).

При линейной аппроксимации момент, как это следует из (67), является квадратичной функцией тока:

Подставив (123) в (121), получим следующее выражение для электромеханической характеристики двигателя:

Выразив в (125) ток через момент с помощью (124), получим следующее выражение для механической характеристики:

(126)

Для построения характеристик Ω (I) и Ω (М) проведем краткий ана­лиз формул (125) и (126). Найдем асимптоты этих характеристик, при токе и моменте, стремящихся к предельным значениям – нулю и бесконечности.

При I→0 и М→0 скорость, как это следует из (125) и (126), принимает бесконечно большое значение, т. е. Ω →∞. Это означа­ет, что ось скорости является первой искомой асимптотой характе­ристик Ω(I) и Ω(M). При I→∞ и М→∞ скорость

Ωа=-R/(Сеα), т. е. прямая с ординатой Ωа=-R/(Сеα) является второй, горизонтальной асимптотой этих характеристик.

Зависимости Ω(I) и Ω(М) в соответствии с (125) и (126) имеют при этом гиперболический характер, что позволяет с учетом сде­ланного анализа представить их в виде кривых, показанных на рис. 55.

Рис. 55. Электромеханическая (а) и механическая (б) характеристики ДПТ ПВ

Особенность полученных характеристик состоит в том, что при небольших токах и моментах двигателя, соответствующих малым моментам нагрузки, его скорость принимает большие значения, при этом характеристики не пересекают ось скорости. Таким образом, для двигателя последовательного возбуждения, включенного по основной схеме (см. рис.54, а), не существуют режимы холостого хода и генератора, работающего параллельно с сетью (или режима рекуперативного торможения), так как характеристики во втором квадранте не проходят.

Это объясняется тем, что при токе и моменте I, М→0 магнитный поток Ф→0, а, следовательно, в соответствии с (65) ЕU. Другими словами, при любой скорости Е 0 характеристиках при каком – то лю­бом фиксированном токе якоря Iи.

Найдем отношение этих скороcтей, отметив, что поскольку ток один и тот же, то и магнитный по­ток в том и другом случаях одинаков, а значит, его можно сокра­тить. После простых преобразований получим

(128)

Выражение (128) позволяет определить расположение искусст­венных электромеханических характеристик относительно есте­ственной, так как числитель при Rд > 0 всегда меньше знаменателя, то и Ωи 21 222324>

Дата добавления: 2019-02-08 ; просмотров: 1668 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Схема ШИП для управления ДПТ по цепи якоря. Симметричный, несимметричный и поочередный способы управления ШИП.

Упрощенная принципиальная схема широтно-импульсного преобразователя (ШИП) представлена на рис 68. Она содержит четыре ключа ТК1 — ТК4. В диагональ моста, образованного силовыми ключами, включена нагрузка.

Нагрузкой является якорь двигателя постоянного тока. Питание ШИП осуществляется от источника постоянного тока, например, неуправляемого выпрямителя.

Наиболее простым способом управления ШИП по цепи якоря является, так называемый, симметричный способ управления.

При этом способе в состоянии одновременного переключения находятся все четыре силовых ключа моста, а напряжение на выходе ШИП представляет собой знакопеременные импульсы, длительность которых регулируется входным сигналом.

В ШИП с симметричным управлением среднее напряжение Uя gна выходе ШИП равно нулю, когда относительная продолжительность включения 0 = 0.5. Временные диаграммы работы ШИП при симметричном способе управления приведены на рис 69. Симметричный способ управления обычно используется в маломощных электроприводах постоянного тока. Его преимуществом является простота реализации и отсутствие зоны нечувствительности в регулировочной характеристике. Недостатком ШИП с симметричным управлением является знакопеременное напряжение на нагрузке и в связи с этим повышенные пульсации тока в якоре двигателя.

Стремление исключить этот недостаток привело к разработке способов, обеспечивающих однополярное напряжение на выходе ШИП.

Простейшим из них является несимметричный. Несимметричное управление представлено на рис 70а) и 70б). В этом случае (рис 70а) переключаются силовые ключи ТК3 и ТК4 (ключи ТК1 и ТК2 при противоположной полярности входного сигнала), силовой ключ ТК1 постоянно открыт, а ключ ТК2 постоянно закрыт. Силовые ключи ТК3 и ТК4 переключаются в противофазе. При включенных ТК1 и ТК4 формируется напряжение, поступающее на якорь двигателя. Одновременное включение ТК1 и ТК3 необходимо при рекуперации энергии в сеть. Это происходит при включенных ТК1 и ТК4, когда Eдв >Un . Ток проходит по обратным диодам этих ключей. Когда же выключается ТК4 и включается ТК3, ток не прерывается, он течет по пути: -левая щетка двигателя М — обратный диод ключа ТК1- ключ ТК3 — правая щетка двигателя- якорь двигателя.

gПри работе в двигательном режиме на выходе ШИП формируются знакопостоянные импульсы и среднее напряжение на выходе равно нулю, когда относительная продолжительность включения ключа ТК4 0 = 0.

Читайте также:  Витая пара падение напряжения

Недостатком рассмотренного способа управления является то, что загрузка ключей рабочим током неодинакова.

Этот недостаток устранен при поочередном управлении, временные диаграммы которого изображены на рис 71а) и 71б).

Здесь при любом знаке входного сигнала в состоянии переключения находятся все четыре силовых ключа моста, однако, частота переключения каждого из них в два раза меньше частоты напряжения на выходе.

Чем ниже частота переключения силовых ключей, тем ниже дополнительные потери мощности в них, т.е. пониженная частота переключения силовых элементов является достоинством ШИП.

. Этим достигаются одинаковые условия работы полупроводниковых приборов в мостовой схеме.tУправляющее напряжение силовых ключей ТК1, ТК2 и ТК3, ТК4 постоянно находится в противофазе; при этом ключи переключаются через период выходного напряжения

При некотором знаке входного сигнала управляющие импульсы Uу1 и Uу4 длительностью t1 подаются на диагонально расположенные ключи со сдвигом на полпериода (t)g= (1+рис 71а), а управляющие импульсы Uу2 и Uу3 длительностью t2 нагрузка закорочена с помощью верхних или нижних ключей, если работа преобразователя происходит в инверторном режиме.t)g нагрузка подключена к источнику питания с помощью диагонально расположенных ключей, а на интервале (1- tg также со сдвигом на полпериода подаются на силовые элементы противоположной диагонали (ТК2, ТК3). В этом случае на интервале t)g= (1-

.tgПри изменении знака входного сигнала порядок управления диагональными ключами изменяется на противоположный (рис 71б). При поочередном управлении на нагрузке формируются знакопостоянные импульсы длительностью

    1. Преобразователи частоты. Классификация. Автономный инвертор.

Для реализации частотного управления электропривода переменного тока наиболее перспективными являются полупроводниковые преобразователи частоты.

Классификация преобразователей частоты на полупроводниковых элементах.

Общим главным достоинством полупроводниковых ПЧ является возможность экономичного регулирования частоты вращения наиболее массового, дешевого и надежного асинхронного электропривода с двигателем, имеющим короткозамкнутый ротор. В ПЧ управлению подлежат две выходные координаты- амплитуда напряжения, или тока нагрузки Um, Im и частота изменения напряжения или тока fn. Соответственно двум выходным координатам ПЧ располагает двумя входными координатами–сигналом управления напряжением, или током Uу.н. (Uу.т.) и сигналом управления частотой Uу.f. (рис 75).

Современные ПЧ можно разделить на два основных класса: двухзвенные ПЧ с автономными инверторами (с промежуточной цепью постоянного тока) и ПЧ с непосредственной связью нагрузки с сетью (непосредственные ПЧ).

5.1.2. Автономный инвертор тока.

один относительно другого.°Автономный инвертор функционально отличается от выпрямителя только направлением преобразования. Электрическая энергия цепи постоянного тока преобразуется в энергию 3-х фазной системы переменного тока. Автономный инвертор функционально не отличается от инвертора, ведомого сетью. Схема включения тиристоров последнего остается той же, что и у управляемого выпрямителя. Точно так же основу 3-х фазного автономного инвертора составляет такая же, как и для выпрямителя мостовая схема с шестью рабочими управляемыми тиристорами. Аналогичной будет и диаграмма очередности включения рабочих тиристоров, в соответствии с которой включающие импульсы поступают на вентильную группу с фазовым сдвигом 60

) в автономном инверторе этот интервал, в принципе, может изменяться в пределах 0°021=l (°В отличие от ТП постоянного тока, в котором рабочий интервал составляет 120 . Данное обстоятельство является достоинством ПЧ с АИТ, т.к. его схема содержит меньшее число силовых вентилей, чем схема ПЧ с АИН. Однако ПЧ с АИТ не может работать без обратных связей по напряжению или скорости двигателя, которые должны обеспечить ему установившиеся режимы работы.°90

Главными преимуществами двухзвенных ПЧ с промежуточным звеном постоянного тока являются:

  1. Возможность получения на выходе преобразователя плавно регулируемой частоты полностью покрывающей потребности электроприводов различного назначения.
  2. Возможность использования относительно простых силовых схем и систем управления ПЧ.
  3. Возможность наращивания сложности силовой части и системы управления преобразователя соразмерно уровню повышения требований к электроприводу, не допуская чрезмерной избыточности системы.
  4. Легкость трансформации ПЧ для работы в установках с питанием электрооборудования от автономных источников, либо локальной сети постоянного тока.

Основные недостатки ДПЧ с промежуточным звеном постоянного тока:

  1. Двукратное преобразование энергии, что увеличивает потери энергии и ухудшает массогабаритные показатели преобразователя.
  2. Наличие в звене постоянного тока силового фильтра, как неотъемлемого элемента системы регулирования напряжения. Являясь реактивным носителем энергии, силовой фильтр звена постоянного тока существенно влияет на динамику ПЧ и ограничивает динамические возможности электропривода. Это проявляется при амплитудно–импульсном (осуществляемом за счет выпрямителя) регулировании величины выходного напряжения ДПЧ. Отмеченный недостаток преодолевается лишь при переходе от амплитудно–импульсного к широтно–импульсному формированию и регулированию выходного напряжения ДПЧ, осуществляемому за счет автономного инвертора.

Анализ истории развития ДПЧ позволяет выделить три характерных этапа.Первый этапхарактеризуется освоением серийного производства и промышленным использованием ДПЧ, выполненных по схеме «управляемый тиристорный выпрямитель–LC фильтр–автономный тиристорный инвертор напряжения с принудительной коммутацией». Такие ДПЧ рассмотрены нами в параграфах 5.1.0–5.1.3.

Основные недостатки преобразователей, освоенных на первом этапе, это несинусоидальность выходного тока и неравномерность вращения двигателя при малых частотах, что ограничивает диапазон регулирования скорости. К недостаткам нужно отнести ограничение быстродействия, связанное с наличием силового фильтра в системе амплитудного регулирования выходного напряжения, несинусоидальность тока, потребляемого из сети и низкий «сетевой» коэффициент мощности. Последнее обусловлено свойствами управляемого выпрямителя (УИ) с естественной коммутацией и фазовым управлением.

Второй этап характеризуется разработкой новых двухзвеньевых полупроводниковых преобразователей частоты, выполненных по схеме: «неуправляемый выпрямитель–LC фильтр–транзисторный автономный инвертор с широтно–импульсной модуляцией выходного напряжения» (рис.82).

Понятие «широтно–импульсная модуляция» отличается от «широтно–импульсного регулирования» тем, что оно включает в себя процесс создания желаемой формы регулируемой переменной (напряжения или тока). Эта форма создается как средняя величина за каждый последующий интервал повторяемости при широтно–импульсном регулировании.

Например, если необходимо получить переменное напряжения синусоидальной формы, оно формируется из последовательности импульсов малой длительности у основания синусоиды и широких импульсов вблизи амплитудного значения синусоиды (рис.83).

Читайте также:  Зависимость пробивного напряжения от температуры для трансформаторного масла

Рис.82. Двухзвенный преобразователь частоты с неуправляемым выпрямителем и транзисторным АИН

Рис.83. Диаграмма напряжения к понятию широтно–импульсная модуляция.

В рассматриваемой системе за счет усложнения алгоритма переключения силовых ключей на инвертор возложена функция как регулирования частоты и амплитуды основной гармоники, так и формирование синусоидального выходного напряжения инвертора.

При этом в звене постоянного тока напряжение остается неизменным.

Переход от амплитудно–импульсного к широтно–импульсному способу формирования и регулирования выходного напряжения существенно изменил свойства преобразователей частоты. Во–первых, существенно приблизилась к синусоиде форма выходного тока и соответственно улучшилась равномерность вращения двигателей, расширился диапазон регулирования скорости. Во–вторых, значительно повысилось быстродействие электропривода, т.к. силовой фильтр на выходе нерегулируемого выпрямителя оказался фактически исключенным из каналов регулирования параметров выходного напряжения преобразователя. И, наконец, существенно улучшается коэффициент мощности преобразователя, как потребителя электроэнергии.

На основе таких преобразователей оказалось возможным создание -усовершенствованных регулируемых электроприводов как массового применения, так и специализированных, удовлетворяющих весьма высоким требованиям, например, транзисторных частотно–регулируемых асинхронных электроприводов подачи металлорежущих станков с диапазоном регулирования скорости порядка 1:1000. Быстро росло количество фирм–производителей преобразовательной техники для электропривода переменного тока, расширилась номенклатура изделий, улучшилось их качество.

Интенсивному развитию преобразователей частоты на этом этапе способствовали значительные успехи в создании новых силовых полупроводниковых приборов, интегрированных схем и других средств микропроцессорного управления.

Тем не менее на данном этапе оказались недостаточно полно проработаны некоторые вопросы энергосбережения и качества энергопотребления. Так выпрямитель не позволяет осуществлять работу электропривода с рекуперацией энергии в сеть, что ограничивает его возможности.

Третий этап характеризуется помимо достоинств ДПЧ второго этапа решением вопросов энергосбережения. Эти вопросы решаются на базе использования в звене постоянного тока выпрямителей на полностью управляемых полупроводниковых приборах. Эти выпрямители получили название активных выпрямителей.

В силовой цепи последовательно включены активный выпрямитель напряжения (АВН), фильтр Ф и автономный инвертор напряжения (АИН). Силовые полупроводниковые переключающиеся элементы выпрямителя и инвертора, обладающие полной управляемостью и двусторонней проводимостью тока, условно показаны в виде ключей. Выпрямитель АВН, выполненный по трехфазной мостовой схеме, преобразует напряжение питающей сети переменного тока в стабилизированное напряжение постоянного тока Ud на конденсаторе фильтра. Трехфазный мостовой АИН работает в режиме широтно–импульсной модуляции (ШИМ) и преобразует это постоянное напряжение в переменное напряжение на выходе АИН с требуемыми значениями частоты и амплитуды основной гармоники. Это обеспечивает благоприятную форму тока двигателя и равномерность его вращения в широком диапазоне скоростей.

Активный выпрямитель выполняется по схеме, полностью идентичной схеме инвертора и по существу представляет собой обращенный АИН, также работающий в режиме ШИМ. Помимо функций преобразования электроэнергии переменного напряжения в постоянное, активный выпрямитель инвертирует постоянное напряжения фильтрового конденсатора Ud в импульсное напряжение на своих зажимах переменного тока А1, В1 и С1. Эти зажимы связаны с питающей сетью посредством буферных реакторов БР. В отличие от регулируемой рабочей (полезной) частоты напряжения, которая создается в точках А, В, С, формируемая частота напряжения на зажимах переменного тока активного выпрямителя напряжения (точки А1, В1, С1) постоянная и равна частоте питающей сети.

Разность мгновенных значений синусоидального напряжения на зажимах А1, В1, С1 воспринимаются буферными реакторами БР, являющимися неотъемлемыми элементами системы. Благодаря использованию режима ШИМ импульсное напряжение, формируемое активным выпрямителем на стороне переменного тока (точки А1, В1, С1), имеют благоприятный гармонический состав, в котором основная гармоника и высшие гармоники существенно отличаются по частоте. Это создает благоприятные условия для фильтрации высших гармоник тока, потребляемого из питающей сети буферными реакторами. Таким образом, решается задача потребления из сети практически синусоидального тока.

Фазовый угол потребляемого тока зависит от соотношения амплитуд и фазовых углов напряжений, приложенных к реакторам со стороны сети и со стороны активного выпрямителя. Варьируя с помощью системы управления АВН фазовыми параметрами основной гармоники его переменного напряжения на зажимах А1, В1, С1, можно обеспечить потребление из сети необходимого тока с заданным фазовым углом. Иными словами, можно обеспечить работу преобразователя частоты с заданным значением коэффициента мощности, например, близким к единице, либо «опережающим», либо «отстающим». Поэтому преобразователь частоты с активным выпрямителем в принципе может быть использован в системе электроснабжения как нейтральный элемент, либо как источник, либо как потребитель реактивной мощности.

Как коммутатор тока активный выпрямитель напряжения преобразует потребляемый из сети переменный, близкий к синусоидальному ток, в пульсирующий выходной ток, содержащий постоянную и переменную составляющие.

Переменная составляющая замыкается через буферный конденсатор, который ограничивает пульсации напряжения Ud в звене постоянного тока. Эти пульсации связаны и определяются переменной составляющей выходного тока АВН. Заметим, что данный конденсатор выполняет ту же функцию и по отношению к переменной составляющей тока потребляемого автономным инвертором (АИН) двухзвенного ПЧ. Постоянная составляющая выходного тока АВН подпитывает конденсатор, компенсируя расход постоянного тока, отдаваемого во входную цепь АИН.

Имеется литература, в которой описываются эти взаимосвязанные процессы и рассматриваются математические модели АИН и АВН.

Как преобразователь энергии постоянного тока в энергию переменного тока АИН обладает чрезвычайно ценным свойством – возможностью двухстороннего энергетического обмена между сетями постоянного и переменного тока. Это свойство сохраняется и в инверсной схеме включения АИН в качестве активного выпрямителя. В итоге двухзвенный ПЧ с активным выпрямителем обеспечивает двухсторонний энергетический обмен между питающей сетью и электродвигателем. Благодаря этому возможно построение энергосберегающих систем электропривода в различных сферах применения с высоким качеством потребления электроэнергии.

Аналогичные результаты обеспечивает применение активных выпрямителей и в двухзвенных ПЧ с автономным инвертором тока. В них используются те же принципы, что и в ПЧ с автономным инвертором напряжения, поэтому такую систему мы подробно не рассматриваем.

Дата добавления: 2015-01-29 ; просмотров: 452 ; Нарушение авторских прав

Источник

Оцените статью
Adblock
detector