Схема генератора частоты синусоидального напряжения

Генераторы синусоидальных и несинусоидальных колебаний.

Генераторы синусоидальных колебаний.

T ремя основными типами электронных генераторов сигналов синусоидальной формы являются LC генераторы, кварцевые генераторы и RC генераторы.
LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соедененных либо параллельно, либо последовательно, параметры которых определяют частоту колебаний. LC генераторы используют в основном, в диапазоне радиочастот. На низких(звуковых) частотах удобнее применять RC генераторы, в которых для задания частоты колебаний используются резистивно — емкостная цепь.

LC генераторы синусоидальных колебаний.

Основными типами LC генераторов являются генератор Хартли и генератор Колпитца.

Генератор Хартли.

В генераторе Хартли, или как еще называют эту схему — индуктивной трехточке положительная обратная связь, необходимая для возникновения колебаний берется с отвода катушки индуктивности(L1 — L2) колебательного контура.

Генератор Колпитца.

В генераторе Колпитца (емкостной трехточке) положительная обратная связь снимается с средней точки составной емкости(C1 — C2) колебательного контура. Генератор Колпитца более стабилен, чем генератор Хартли и более часто используется. Когда требуется высокая стабильность, используют кварцевые генераторы.

Кварц — это материал, способный преобразовывать механическую энергию в электрическую и наоборот. Если к кристаллу кварца приложить переменное напряжение, он начнет колебаться, в такт с его частотой. Каждый кристалл обладает собственной резонансной частотой, зависящей от его размеров и структуры. Чем ближе частота приложенного напряжения, к резонансной частоте, тем выше интенсивность колебаний. Для изготовления кварцевого резонатора на кристаллическую пластинку кварца наносят металлические электроды.

Схема кварцевого генератора Хартли с параллельной обратной связью.

Кварц включен последовательно в цепь обратной связи. Если частота колебательного контура отклоняется от частоты кварца, волновое сопротивлние(импенданс) кварца увеличивается, уменьшая величину обратной связи с колебательным контуром. Колебательный контур возвращается на частоту кварца.

Генератор Пирса.

Очень популярная схема, поскольку в ней не используются катушки индуктивности.

Верхний предел резонанса кварца составляет 25 МГц. Если необходим стабильный генератор на более высокой частоте используют схему Батлера. Колебательный контур настраивается на частоту кварца или на частоту одной из его нечетных гармоник (третьей или пятой).

RC генераторы синусоидальных колебаний.

RC генераторы используют для задания частоты резисивно — емкостную связь. Основные два вида генераторов синусоидальных колебаний это: генератор с фазосдвигающей цепью и генератор на основе моста Вина. Генератор с фазосдвигающей цепью — это обычный усилитель с фазосдвигающей цепью обратной связи. На комбинации цепочек имеют место потери мощности, поэтому транзистор должен иметь достаточно высокий коэффициент усиления.

Частота генератора рассчитывается по формуле.

R в этой формуле — значения сопротивлений R1,R2, (они одинаковые). C — это соответственно, любое из значений емкости С1 или С2 (также одинаковые)

Генератор на основе моста Вина – двухкаскадный усилитель с цепью опережения-запаздывания и делителем напряжения.

Резисторы R1 и R2 одинакового номинала(по сопротивлению), сопротивление резистора R3 примерно вполовину меньше. Емкость конденсаторов C1 и C2 равна, а конденсатора C3 — примерно в два раза больше.
Частота генерируемых колебаний определяется соотношением.

Где C — номинал конденсатора C1(C2), R номинал сопротивления — R1(R2).
При R1,R2 = 10KOm, R3=4,7KOm, C1,C2 =16нФ, C3=33нФ частота равняется, примерно — 1000гц.
Используя сдвоенный переменный резистор (в качестве R1 и R2) можно плавно изменять частоту колебаний в больших пределах.

Читайте также:  Ergus bc12a не выдает напряжение

Генератор синосуидальных колебаний имеющий несколько поддиапазонов, можно получить с помощью несложной коммутационной схемы, с помощью которой можно попеременно подключать конденсаторы различной емкости, в качестве С1, С2 и С3. Подобное устройство может быть очень полезным для радиолюбителя, в частности — для настройки различных усилительных каскадов.

Генераторы несинусоидальных колебаний.

Генераторы несинусоидальных колебаний применятся для создания периодических электрических сигналов произвольной формы – прямоугольной, пилообразной или треугольной формы.

Блокинг – генератор.

Пока конденсатор заряжен — транзистор закрыт. Но конденсатор постепенно разряжается через резистор и запирающее напряжение исчезает. Транзистор начинает приоткрываться — появляется ток в цепи обмотки трансформатора, соответственно на вторичной обмотке возникает напряжение способствуещее лавинообразному открыванию транзистора.
Транзистор переходит в режим насыщения — конденсатор заряжается через переход эмиттер – база, напряжение в вторичной обмотке падает до нуля. Транзистор запирается, после чего процесс повторяется снова и снова.

Очень часто, схему блокинг — генератора используют в различных устройствах, преобразующих постоянный ток в переменный. Это — различные импульсные блоки питания, вариации которых встречаются в современной аппаратуре очень широко. Преобразователи постоянного тока в переменный, с повышением выходного напряжения — являются основой целого ряда устройств, разной степени полезности — от портативного мегаомметра, до карманного электрошокера.

Мультивибратор.

Мультивибратор — генератор импульсов формы близкой к прямоугольной. Его основу составляют два усилительных каскада связанных между собой так, что на вход каждого каскада подается сигнал с выхода другого. Получается, что они по очереди запирают друг друга. Частота зависит от емкости конденсаторов, и величины сопротивления резисторов, через которые осуществляется их разряд.

Мультивибратор можно легко собрать, используя широко распостраненные детали, на абсолютно любых биполярных транзисторах. Кроме основной частоты рассчитываемой по формуле:

мультивибратор вырабатывает большое количество дополнительных гармоник. Если применив высокочастотные транзисторы собрать мультивибратор с основной частотой в звуковой области(лучше около 1000 гц), то частоты высших гармоник оказываются в какой то степени, промодулированными на этой, основной частоте. Получается, что подобный генератор может использоваться как универсальный пробник, для проверки как радиочастотных усилительных трактов, так и каскадов усиления низкой(звуковой) частоты.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

Источник

RC-генератор синусоидальных сигналов с регулировкой частоты одним потенциометром

Texas Instruments LM324

Дано описание RC-генераторов синусоидальных сигналов с использованием сбалансированных симметричных резистивно-емкостных мостов и двух операционных усилителей, что позволяет регулировать частоту генерации одним потенциометром. Для обеспечения работы генераторов соотношение активных и реактивных сопротивлений плеч резистивно-емкостных мостов должно быть одинаково и иметь значение не менее 2.5.

Для получения периодических низкочастотных колебаний синусоидальной формы используют RC-генераторы нерегулируемой и регулируемой частоты. К генераторам первого вида относят автогенераторы с лестничной многозвенной фазосдвигающей RC-цепью (R- или С-параллель). Как несложно заметить, очевидным недостатком таких генераторов является невозможность регулирования частоты простыми средствами, что резко ограничивает область практического применения подобных генераторов.

В 1891 г. немецкий физик Макс Вин (Max Wien, 1866–1938) для измерения импедансов электрических цепей предложил пассивный четырёхполюсник на основе RC-фильтров верхних и нижних частот (мост Вина). 11 июля 1939 г. американец Уильям Реддингтон Хьюлетт (William Reddington Hewlett, 1913–2001) подал заявку на изобретение и 6 января 1942 г. получил патент США № 2268872 на «Перестраиваемый генератор звуковой частоты». Это был первый низкочастотный перестраиваемый генератор на RC-элементах [1].

Рисунок 1. Схемы RC-мостов, которые могут быть использованы в генераторах синусоидального
напряжения.

Теоретические обоснования и условия возбуждения незатухающих синусоидальных колебаний в RC-генераторах рассмотрены в работах [2–4].

Современные RC-генераторы с возможностью плавной перестройки частоты выполняют с использованием моста Вина (Вина – Робинсона), Рисунок 1а; одинарного или двойного Т-образных мостов, Рисунок 1б, а также с использованием квадратурных генераторов [2, 3], фазовращателей на операционных усилителях, функциональных генераторов [5–7]. Во всех этих случаях для регулировки частоты используют сдвоенный потенциометр.

Читайте также:  Напряжение в сети автомобиля при работающем двигателе 12 вольт

Проблему создания RC-генератора синусоидальных сигналов с регулировкой частоты одним потенциометром удалось решить за счет использования сбалансированного симметричного резистивно-емкостного моста, Рисунок 1в, плечи которого состоят из последовательно включенных резисторов и конденсаторов, причем соотношение активных и реактивных сопротивлений плеч равно и должно иметь значение не менее 2.5.

Рисунок 2. RC-генератор синусоидального напряжения с использованием
сбалансированного симметричного резистивно-емкостного
моста.

Плечо моста низкого активно-реактивного сопротивления подключено к выходу первого операционного усилителя, Рисунки 2 и 3, а высокого – к выходу второго операционного усилителя. Диагональ моста емкостного плеча присоединена к инвертирующему входу первого усилителя, а резистивного плеча – к инвертирующему входу второго усилителя. Между входом и выходом первого операционного усилителя включен потенциометр, регулирующий частоту генерации. Инвертирующие входы усилителей соединены с общей шиной.

Рисунок 3. Вариант схемы RC-генератора синусоидального напряжения.

Генератор, Рисунок 2, выполнен на элементах DA1.1 и DA1.2 микросхемы LM324. При выполнении условия

генератор при регулировке потенциометра R1 вырабатывает сигнал синусоидальной формы частотой от 0.3 до 1 кГц. Частоту генерации можно определить из выражения:

Коэффициент нелинейных искажений зависит от точности балансировки моста и с ростом частоты меняется в пределах от 0.6 до 2.2%. Амплитуда выходных сигналов в тех же условиях снижается от 10.9 до 8.4 В.

На Рисунке 3 показана модифицированная схема генератора, отличающаяся наличием дополнительного конденсатора C1. Генератор работает в диапазоне частот от 1 до 4.8 кГц, причем коэффициент нелинейных искажений с ростом частоты меняется в пределах от 0.6 до 1.8%. Амплитуда выходных сигналов во всем диапазоне частот не изменяется и составляет 10.9 В.

В качестве RC-комплектующих генераторов следует использовать прецизионные элементы. Для генератора, Рисунок 3, для минимизации коэффициента нелинейных искажений конденсатор C1 получают путем параллельного включения двух-трех конденсаторов – постоянной и переменной (подстроечной) емкости. При разбалансе моста генераторы переходят либо в режим генерации релаксационных колебаний низкой частоты, либо амплитуда синусоидального сигнала быстро затухает во времени.

Источник

ElectronicsBlog

Обучающие статьи по электронике

Генераторы синусоидальных колебаний на ОУ

Всем доброго времени суток! В предыдущих двух статьях я рассказал о построении генераторов на основе ОУ (статья про мультивибраторы здесь, про генераторы треугольного напряжения здесь). Ещё одним видом сигнала, который используются в радиотехнике и электронике является синусоидальный сигнал.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Для формирования синусоидального сигнала применяются различные схемы генераторов и формирователей, рассмотрение которых в данной статье не представляется возможным.

Как происходит формирование синусоидальных колебаний?

Любой генератор (не только синусоидальных колебаний) представляет собой замкнутую цепь, состоящую из усилителя и селективной цепи (частотно-избирательная цепь). Причем селективная цепь включена в цепь ПОС (положительная обратная связь) усилителя, где могут быть включены дополнительные усилители.

Допустим, на вход селективной цепи поступает сигнал, состоящий из большого количества синусоидальных колебаний (гармоник). Проходя через селективную цепь, колебания ослабляются (происходит уменьшение амплитуды) в различной степени, а также происходит изменение фазы данных колебаний. В результате на вход усилителя с выхода селективной цепи поступают синусоидальные сигналы с различными уровнями амплитуды и фазовыми сдвигами, где происходит их усиление для компенсации ослабления селективной цепью.

Так как селективная цепь пропускает без изменения фазы только гармонику определённой частоты, то после усилителя на вход селективной цепи поступит та же гармоника с такой же амплитудой и фазой, которую пропускает селективная цепь, а остальные гармоники будут с изменёнными амплитудами и фазами сигнала. В результате сложения исходного сигнала и сигнала поступающего с выхода усилителя только у гармоники, на частоту которой настроена частотно-избирательная цепь, будет происходить значительное увеличение амплитуды.

Читайте также:  Ups автоматическое включение при подаче напряжения

Из всего выше сказанного можно сделать вывод, что петлевое усиление схемы должно быть не меньше единицы (в идеальном случае равно 1), а полный фазовый сдвиг схемы равен нулю.

Схем генераторов синусоидальных или как их ещё называют гармонических колебаний, существует большое количество, рассмотреть которые в одной статье не представляется возможным. Поэтому ограничимся лишь некоторыми из них, которые построены на ОУ и RC-цепочках.

Генератор синусоидальных колебаний на основе моста Вина

Генератор синусоидальных колебаний на основе моста Вина или просто генератор Вина является одним из самых распространённых RC-генераторов синусоидальных колебаний. Схема данного генератора показана на рисунке ниже


Схема генератора Вина на основе ОУ.

Генератор Вина состоит из ОУ DA1, который охвачен ООС (отрицательная обратная связь) посредством резисторов R1 и R2, а также ПОС (положительная обратная связь) с помощью частотно-избирательной цепи R3C1R4C2.

Частотно-избирательная цепь R3C1R4C2 называется мостом Вина, от названия которого и получил наименование генератор данного типа. Данный мост состоит из последовательно включённых дифференцирующей цепи R4C2 и интегрирующей цепи R3C1. Как известно для генерирования сигнала мост Вина должен обеспечить нулевой фазовый сдвиг сигнала. Это обеспечивается равенством постоянной времени интегрирующей цепи R3C1 и дифференцирующей цепи R4C2

Тогда частота, при которой будет сдвиг фаз равный нулю, определяется следующим выражением

При данном условии коэффициент передачи цепи ПОС будет равен 1/3. Поэтому для того чтобы компенсировать данное условие коэффициент передачи цепи ООС должен быть равен 3, то есть

Генератор с мостом Вина обеспечивает выходной синусоидальный сигнал с небольшими искажениями – порядка 0,05 %. Однако у данного типа генератора существует серьёзная проблема в том, что для получения качественного синусоидального сигнала необходимо обеспечить точные соотношения резисторов в цепи ООС R1 и R2, то есть обеспечить коэффициент передачи цепи равный трём (β = 1/3). Так если β 1/3 даже если и возникнут колебания их амплитуда будет постепенно уменьшаться и со временем станет равной нулю. Поэтому для стабилизации работы генератора Вина применяют различные автоматические системы стабилизации амплитуды.

Улучшение параметров генератора Вина

Как указывалось выше оптимальное значение коэффициента передачи ООС (β = 1/3) обеспечить практически невозможно, поэтому применяют системы автоматической стабилизации амплитуды. Данная система работает так чтобы воздействовать на коэффициент передачи схемы и при заданной частоте стабилизировать колебания при небольших искажениях.

В основе систем стабилизации амплитуды лежат свойство нелинейных элементов под действием напряжения изменять своё внутренне сопротивление. Одна из простейших схем стабилизации содержит два полупроводниковых диода включённых в цепь ООС


Схема генератора Вина на ОУ с простейшей системой автоматической стабилизации амплитуды.

В данной схеме последовательно с резистором обратной связи R2 включены два диода VD1VD2 по встречно-параллельной схеме, чем обеспечивается стабилизация амплитуды положительной и отрицательной полуволн синусоидального сигнала.

Как известно p-n-переход диода имеет динамическое сопротивление, имеющее обратную зависимость от протекающего через диод тока

где 26 (мВ) – температурный потенциал p-n-перехода,

IД (А) – мгновенное значение тока протекающего через диод.

Таким образом, коэффициент передачи цепи ООС будет определяться следующим выражением

При возрастании амплитуды выходного напряжения, ток, протекающий через диод, увеличивается, как следствие уменьшается динамическое сопротивление диода, и возрастает коэффициент передачи цепи ООС, тем самым уменьшая амплитуду выходного напряжения.

При реализации данной схемы величину резистора R2 следует брать несколько меньшей, чем в схеме без стабилизации амплитуды, чтобы β « Предыдущая статья

Источник

Оцените статью
Adblock
detector