Способы защиты от перегрузок по напряжению

Содержание
  1. Способы защиты от перенапряжений в электрических сетях
  2. Способы защиты электрических цепей от перегрузки
  3. Разновидности средств защиты
  4. Защита от перегрузки: требования, особенности
  5. Как защитить квартиру от превышения напряжения

    От скачков напряжения перегорают лампочки, выходит из строя бытовая техника и даже может произойти аварийная ситуация в квартирной электропроводке. Повышенное напряжение наблюдается при перекосе фаз и других проблемах на линии. Давайте разбираться, как можно защитить электрооборудование квартиры от превышения напряжения. Итак, по каким причинам происходит превышение напряжения в сети? 2. Импульсные перенапряжения или т.н. скачки напряжения. 3. Колебания, вызванные разницей нагрузки в разное время суток или время года. Стоит отметить что в ГОСТ 29322-2014 сказано: «напряжение питания не должно отличаться от номинального напряжения системы больше чем на ±10%» что для 220В лежит в пределах 198-242В. Перекос фаз Происходит в результате полного отгорания нулевого проводника на вводе в дом, квартиру или от ТП, или сильного ухудшения его контакта. При этом все однофазные потребители, которыми в большинстве случаев являются квартиры, оказываются соединёнными последовательно на Uлинейное. Тогда напряжение между ними распределяется по закону Ома, где в качестве сопротивления R выступает приведенное сопротивления подключенной в квартирах нагрузки. Если сказать простым языком, то там, где подключено мало приборов и они маломощные напряжение будет высоким, а где подключены мощные обогреватели – низким. Кстати, при отгорании нуля на вводе характерно такое явление как «две фазы в розетках». Импульсные перенапряжения Часто возникают в результате включения отключения мощных электроприборов или их группы. К этой же причине относятся и сварочные работы, чаще всего такое случается в частном секторе, когда какой-нибудь домашний мастер в очередной раз решает «подварить» ворота или забор. Также скачки в питающей сети могут возникать из-за плохого контакта на воздушной линии электропередач (ВЛЭП), Из-за погодных условий, таких как ветер, метель, ливень, гроза также может «прыгать» напряжение. Это происходит из-за их воздействия на ВЛЭП. Сезонные или суточные колебания В разное время суток происходят колебания напряжения из-за того, что изменяется нагрузка, например, вечером, когда люди приходят с работы они включают электроплиты, обогреватели и другие электроприборы, ток возрастает и в результате происходят просадки напряжения, а ночью, когда все спят и нагрузка уменьшается – напряжение может наоборот быть повышенным. Летом также может повышаться напряжение, потому что отключаются электрокотлы и прочая техника. Хотя в городах летом наблюдаются просадки напряжения в связи с тем, что повсеместно начинают работать кондиционеры. Если сказать простым языком, то колебания напряжения обусловлены тем, что на подстанции есть возможность регулировки напряжения либо с помощью переключения проводов к отводам обмоток, либо с помощью специальных систем. Так для того, чтобы обеспечить какой-то усредненный уровень напряжения под определенной нагрузкой и устанавливается определенное его значение. В результате, когда нагрузка большая – оно может проседать, а когда нагрузка маленькая – наоборот, повышаться. Последствия В результате длительных повышенных напряжений на нагревательных приборах выделяется большая мощность, что сокращает срок службы. При значительных превышения могут выходить из строя полупроводниковые и другие электронные компоненты бытовой техники – диоды, транзисторы и конденсаторы входных фильтров. Последствия импульсных перенапряжений в сущности такие же, но амплитуда импульсов в этом случае может достигать нескольких киловольт. Вероятны разные развития событий: Перегорание предохранителей электроприборов; Выход из строя компонентов схемы; Срабатывание автоматических выключателей; В самых негативных случаях возможны и возгорания. Способы защиты Чтобы обезопасить квартиру от превышения напряжения используют либо стабилизаторы, которые нормализируют напряжения до нормального уровня, либо отключают питание при критических параметрах сети. В связи с этим можно выделить два вида приборов: Регулирующие (стабилизаторы или ручные ЛАТРы); Коммутирующие (РКН, РН, УЗМ и пр.). Рассмотрим их особенности по отдельности. Реле напряжения Под названием «реле напряжения» на современном рынке представлено множество устройств, начиная от «безымянного» Китая, заканчивая популярными и общепризнанными моделями, так можно выделить следующие: Есть встроенное реле для отключения цепи; Следит за напряжением в сети; Вы можете установить верхний и нижний предел допустимых напряжений питания; Когда напряжение в электросети станет больше или меньше установленных пределов – реле отключится и защищаемая цепь обесточится. Это может быть, как отдельный электроприбор, так и вся квартира; Не спасает от импульсных перенапряжений; Защищает только от повышенного или пониженного напряжения. В зависимости от модели, устройство может работать как реле: Максимального и минимального напряжения. Такой функционал позволяет обеспечить защиту только от повышенного или пониженного напряжения, что уменьшит число отказов или отключений электроустановки. В некоторых случаях пониженные значения питающей сети являются допустимыми для работы, а в некоторых наоборот (например, электродвигателя не «любят» пониженного напряжения – сильно снижается момент и растёт ток). Для установки на DIN-рейку в электрощит; Для подключения в розетку (розеточные реле). По числу фаз – однофазные и трёхфазные. При сборе трёхфазного щита также можно использовать три однофазных реле напряжения. Оба исполнения одинаково хороши – розеточным реле можно обезопасить отдельное устройство, например, установив прибор для защиты холодильника, или группу устройств, например, компьютер подключенный через удлинитель. Рассмотрим некоторые популярные модели для монтажа на DIN-рейку: РН-106 или РН-104 – модели отличаются только номинальным током – 63 и 40 А соответственно. Диапазон регулирования срабатывания по Umin (минимальное напряжение) от 160 до 210 В, а по Umах от 230 до 280В. Также настраивается время, через которое произойдет автоматическое повторное включение (также называют АПВ или задержка включения) – от 5 до 900 с. У прибора удобные и интуитивно понятные органы регулировки. Схема подключения довольно стандартна для аналогичных приборов. РН-111М и РН-113М – это реле напряжения от того же производителя, но более позволяет применять его в большем диапазоне задач, ограничивать только максимальное или минимальное напряжение, или оба порога срабатывания. Главное 111 и 113-й модели – номинальный ток 16 и 32А соответственно, а также РН-113М занимает на 1 модель в щите больше чем 111М. Остальные характеристики у него, как и остальных устройств этого типа подобны. Обратите внимание, что у устройства цепь питания отделена от исполнительной цепи, а на выходе стоит реле с нормально-замкнутым контактом, что также позволяет реализовать большее число схем защитной автоматики. На примере РН-113М схема подключения может быть выполнена в двух вариантах, в зависимости от выполняемой функции (ограничение верхнего, нижнего или обоих уровней напряжения). Для РН-111М – аналогично. Учтите, что реле напряжения должно быть установлено в цепи защищенной автоматическим выключателем (на схеме QF), поскольку функции защиты от перегрузки в подавляющем большинстве моделей нет. Для увеличения мощности, которую коммутирует реле – используйте контактный пускатель, подключив его катушку вместо нагрузки, а саму нагрузку к силовым контактам КМ. Устройство защиты от импульсных перенапряжений (УЗИП) используется для защиты не от повышенного напряжения, а от высоковольтных скачков (импульсов). Представляют собой устройства, которые при возникновении импульсного перенапряжения величиной в несколько киловольт сбрасывают энергию импульса на землю. Пример такого устройства является ОИН – ограничитель импульсных перенапряжений. Внутри которого установлен варистор. Как уже было сказано, устройство подключается между фазным и защитным проводником. В случае использования системы TN-C (без заземления) – допускается установка между фазой и нулем после автомата. Главным недостатком перечисленных устройств является то, что они условно одноразовые. Если энергия высоковольтного импульса была больше той, что может рассеять варистор в ОИН, то он выйдет из строя. Но учтите, что установка таких приборов как УЗИП должна быть проведена только после консультации с опытным электриком. Поскольку сам по себе прибор может представлять опасность, если установлен, например, до автоматического выключателя, тогда ток КЗ, в случае пробоя УЗИП будет очень высоким, а отключить цепь сможет только ближайший автоматический выключатель, и будет очень плохо, если последний окажется аж в КТП. Также нельзя забывать и о том, что УЗИП может сработать и по причине естественного старения. Хочется сказать отдельное слово о таких устройствах как УЗМ-50Ц и его аналогах производства ЭКМ «МЕАНДР», это комбинированное устройство, оно обеспечивает и функции реле напряжения, и защиты от высоковольтных импульсов, и вольт-амперметра. При этом производитель рекомендует использовать его совместно с полноценным УЗИП. Это обусловлено малой мощностью варистора. Технические характеристики приведены ниже: На корпусе прибора кроме органов управления (двух кнопок) расположен трёхразрядный индикатор, на котором выводятся параметры при настройке, состояние и текущее напряжение, ток или потребляемая мощность. Схема подключения достаточно простая, она приведена ниже. Стабилизатор И наконец для обеспечения стабильного напряжения в бытовой сети, а также защиты от скачков напряжения применяются стабилизаторы напряжения. Они бывают: Самый дешевый вариант – релейные, а самый дорогой – инверторные. Стоит отметить что феррорезонансные приборы в настоящее время используются редко. Они использовались во времена СССР для питания телевизоров. Одним из популярных производителей является отечественная «РЕСАНТА», пример продукции которой вы видите ниже. Релейные, электронные и электромеханические стабилизаторы построены на базе автотрансформатора, отличается лишь способ переключения отводов от его обмоток. Переключение может осуществляться с помощью: сервопривода и подвижной щетки (электромеханические); Подробнее мы рассматривали их принцип работы и виды в статье — Сетевые стабилизаторы напряжения 220В Если кратко, то стабилизатор сетевого напряжения – это устройство, которое поддерживает одинаковое значение выходного напряжения при изменении входного, в установленных конструкцией пределах. Регулировка происходит плавно (сервоприводные приборы) и с заданным шагом (релейные или электронные). По мощности эти приборы бывают как маломощные – на 500 Вт, для питания отдельных приборов, так и способные защитить всю квартиру – мощностью больше 10 кВт. По количеству фаз – однофазные и трёхфазные. На фото ниже вы можете наблюдать трёхфазную модель «РЕСАНТА АСН-15000/3-ЭМ», мощностью в 15 кВт. Посетители часто спрашивают «что лучше стабилизатор или реле напряжения?». На этот вопрос нельзя дать однозначный ответ, поскольку это разные приборы. Но если вы установите реле напряжения перед стабилизатором, то обезопасите не только электросеть вашего дома, но и сам дорогостоящий стабилизатор. В то время как для защиты отдельных электроприборов можно использовать как стабилизаторы, так и розеточные реле напряжения, так и эти устройства в паре. Источник
Читайте также:  Порядок установки выходного напряжения г4 102а

Способы защиты от перенапряжений в электрических сетях

Перенапряжение – это ненормальный режим работы в электрических сетях, который заключается в чрезмерном увеличении значения напряжения выше допустимых значений для участка электрической сети, который является опасным для элементов оборудования данного участка электрической сети.

Изоляция оборудования электроустановок рассчитана на нормальную работу при определенных значениях напряжения, в случае наличия перенапряжения, изоляция приходит в негодность, что приводит к повреждению оборудования и представляет опасность для обслуживающего персонала или людей, которые находятся в непосредственной близости к элементам электрических сетей.

Перенапряжения могут быть двух видов – природными (внешними) и коммутационными (внутренними). Природные перенапряжения – это явление атмосферного электричества. Коммутационные перенапряжения возникают непосредственно в электрических сетях, причинами их проявления могут быть большие перепады нагрузки на линиях электропередач, феррорезонансные явления, послеаварийные режимы работы электрических сетей.

Способы защиты от перенапряжений

В электроустановках для защиты оборудования от возможных перенапряжений применяют такое защитное оборудование, как разрядники и ограничители перенапряжения нелинейные (ОПН) .

Основным конструктивным элементом данного защитного оборудования является элемент с нелинейными характеристиками. Характерная особенность данных элементов заключается в том, что они изменяют свое сопротивление в зависимости от приложенного к ним значения напряжения. Рассмотрим вкратце принцип работы данных защитных элементов.

Разрядник или ограничитель перенапряжения присоединяется к шине рабочего напряжения и к контуру заземления электроустановки. В нормальном режиме, то есть, когда сетевое напряжение находится в пределах допустимых значений, разрядник (ОПН) имеет очень большое сопротивление, и он не проводит напряжение.

В случае возникновения перенапряжения на участке электрической сети сопротивление разрядника (ОПН) резко падает, и данный защитный элемент проводит напряжение, способствуя утечке возникшего скачка напряжения в заземляющий контур. То есть на момент перенапряжения разрядник (ОПН) осуществляет электрическое соединение провода с землей.

Разрядники и ОПН устанавливаются для защиты элементов оборудования на территории распределительных устройств электроустановок, а также в начале и в конце линий электропередач напряжением 6 и 10 кВ, которые не оборудованы грозозащитным тросом.

Для защиты от природных (внешних) перенапряжений на металлических и железобетонных конструкциях открытых распределительных устройств устанавливают стержневые молниеотводы . На высоковольтных линиях напряжением 35 кВ и выше применяют грозозащитный трос (тросовый молниеотвод), который располагается в верхней части опор линий электропередач на всей их протяженности, соединяясь с металлическими элементами линейных порталов открытых распределительных устройств подстанций. Молниеотводы притягивают атмосферные заряды на себя, тем самым предупреждая их попадания на токоведущие части электрооборудования электроустановок.

Для обеспечения надежной защиты оборудования электроустановок от возможных перенапряжений, разрядники и ограничители перенапряжений, как и все элементы оборудования, должны проходить периодические ремонты и испытания. Также необходимо в соответствии с установленной периодичностью проверять сопротивление и техническое состояние заземляющих контуров распределительных устройств.

Перенапряжения в низковольтных сетях

Явление перенапряжений также характерно и для низковольтных сетей напряжением 220/380 В. Перенапряжения в низковольтных сетях приводят к выходу из строя не только оборудования данных электрических сетей, но и электроприборов, которые включены в сеть.

Для защиты от перенапряжений в домашней электропроводке используют реле напряжения или стабилизаторы напряжения, источники бесперебойного питания, в которых предусмотрена соответствующая функция. Также существуют модульные устройства защиты от импульсных перенапряжений, предназначенные для установки в домашний распределительный щиток.

В низковольтных распределительных устройствах предприятий, электроустановок, ЛЭП для защиты от перенапряжений применяют специальные ограничители перенапряжений по принципу работы схожие с высоковольтными ОПН.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Способы защиты электрических цепей от перегрузки

Электрический ток является очень сложным, и в то же время опасным. Из-за перегрузки напряжения в цепи может возникать короткое замыкание и прочие неприятные ситуации, которые приводят к аварии и к непредвиденным последствиям. В связи с этим каждый должен помнить о том, что все электрические цепи нуждаются в средствах защиты.

Токи могут приводить к повреждению сети либо же электрического прибора, который от него действует. Именно по этой причине на каждой цепи должно быть устройство, благодаря которому она будет защищена от перегрузки и обеспечит бесперебойную работу.

В современном мире подобных устройств присутствует достаточно большое количество. Подбирают их в зависимости от параметров защиты и метода подключения, по типу. В список аппаратов для защиты входят различные реле или автоматические выключатели, например, А3722, а также разнообразные предохранители.

Разновидности средств защиты

При помощи плавкого предохранителя можно защитить участок цепи от возможного короткого замыкания или же от токовых перегрузок. Они могут быть двух типов: со сменными вставками либо с одноразовыми.

Применяют как для бытовых, так и для промышленных нужд. Такие предохранители являются весьма распространёнными, так как они отличаются такими положительными качествами, как простота в процессе замены и конструкции, удобство при эксплуатации.

Такая же точно роль и у автоматического выключателя. Но конструкция у них, в сравнении с предохранителями, более сложная. Стоит заметить, что несмотря на это, в использовании они более удобны. Автоматический выключатель при возникновении аварийной ситуации повреждённый участок сразу же отключит от сети.

Читайте также:  Стабилизатор напряжения сн 5000 щит инструкция

Он после выполнения своей функции смены на новое устройство не требует и восстанавливается достаточно быстро. При выполнении ремонтных регламентных работ таким приспособлением очень просто пользоваться.

Но наибольшей популярностью для защиты от перегрузки пользуются тепловые реле. Принцип его работы основывается на возможности тока производить нагрев проводника, по которому он непосредственно протекает. Большая часть такого реле состоит из биметаллических пластин. В процессе нагревания наблюдается её изгиб и последующий разрыв контакта.

Советы в статье «Как защитить квартиру от перенапряжений?» здесь.

Помимо упомянутых присутствуют реле напряжения и токовые, а также дифференциального тока. Многие для лучшей защиты в одном устройстве комбинируют несколько средств для защиты от перегрузки тока.

Источник

Защита от перегрузки: требования, особенности

Защита от перегрузки («overload protection») — защита, отключающая электрическую цепь при возникновении в ней перегрузки.

Обратимся к книге [1] автора Харечко Ю.В., который, проведя анализ нормативной документации, заключил следующее:

« Требования к защите электрических цепей от перегрузки приведены в разделе 433 «Защита от тока перегрузки» стандарта МЭК 60364‑4‑43 и разработанного на его основе ГОСТ Р 50571.4.43-2012. Обоими стандартами предусмотрено обязательное выполнение в электроустановках зданий защиты от перегрузки проводников ее электрических цепей, как правило, посредством их отключения устройствами защиты от сверхтока, к которым, прежде всего, относятся автоматические выключатели и плавкие предохранители.

В соответствии с требованиями п. 433.1 [2] международного и национального стандартов устройства защиты от перегрузки должны иметь время-токовую характеристику с обратно-зависимой выдержкой времени и обеспечивать отключение токов перегрузки раньше, чем произойдет опасное повышение температуры проводников и их соединений. Рабочая характеристика любого устройства защиты от сверхтока, применяемого для защиты кабеля (проводов) электропроводки от перегрузки, должна отвечать следующим условиям:

  • где IB – расчетный ток электрической цепи, А;
  • In – номинальный ток устройства защиты от сверхтока, А;
  • Iz – допустимый длительный ток жил кабеля (провода), А;
  • I2 – ток, обеспечивающий надежное срабатывание устройства защиты от сверхтока в течение условного времени 1 , А. »

Примечание 1: В ГОСТ Р 50571.4.43-2012 вместо условного времени ошибочно указано стандартное время, которое не определено и не разъяснено национальным стандартом.

В приложениях B обоих стандартов приведен рисунок B.1, иллюстрирующий эти условия.

Рис. B.1. Иллюстрация условий 1 и 2 из 433.1 МЭК 60364‑4‑43

Примечание к рисунку: Приведен рисунок B.1 из стандарта МЭК 60364‑4‑43. В ГОСТ Р 50571.4.43-2012 некоторые характеристики на этом рисунке названы неправильно.

Ток I2 для автоматических выключателей принимают равным условному току расцепления, для плавких предохранителей – условному току плавления. Условный ток расцепления для автоматических выключателей, соответствующих требованиям стандарта МЭК 60898‑1 и ГОСТ IEC 60898-1-2020, а также для АВДТ, соответствующих требованиям стандарта МЭК 61009‑1 и ГОСТ IEC 61009-1-2020, установлен равным It = 1,45In. Любой автоматический выключатель и АВДТ должны расцепиться при таком сверхтоке в течение условного времени, которое равно 1 ч, если их номинальный ток In до 63 А включительно, и 2 ч, если In больше 63 А.

Таким образом, применительно к автоматическим выключателям, соответствующим требованиям стандарта МЭК 60898‑1 и ГОСТ IEC 60898-1-2020, I2 = 1,45 In. Поэтому указанную выше вторую формулу можно преобразовать так:

Особенности.

Харечко Ю.В. в своей книге [1] акцентирует внимание на некоторых особенностях защиты от перегрузки:

« В стандарте МЭК 60364‑4‑43 и ГОСТ Р 50571.4.43-2012 отмечается, что при соблюдении указанных требований нельзя обеспечить защиту проводников от малых длительных токов перегрузки, которые меньше, чем I2. В таких случаях следует предусматривать выбор проводников с бóльшим сечением, т. е. если подобные токи могут протекать в электрических цепях электроустановки здания, то для обеспечения гарантированной защиты их проводников от малых токов перегрузки целесообразно обеспечить следующее согласование характеристик устройств защиты от сверхтока и защищаемых им проводников:

IB ≤ In 2 , 2,5 мм 2 и 4,0 мм 2 и имеющих изоляцию из поливинилхлорида, применяют устройства защиты от сверхтока с номинальным током не более соответственно 13 А (при некоторых условиях – не более 10 А), 16 А и 25 А (при некоторых условиях – не более 20 А).

Подобную практику целесообразно «узаконить» и в нашей стране, обеспечив на этапе создания электроустановок зданий повсеместное применение устройств защиты от сверхтока с номинальным током не более 10 А для защиты от сверхтока медных проводников электропроводок сечением 1,5 мм 2 , 16 А – 2,5 мм 2 и 20 А – 4,0 мм 2 . Аналогичного подхода следует придерживаться и при проведении реконструкции существующих электроустановок зданий, когда заменяют проводники электропроводок. »

Источник

Как защитить квартиру от превышения напряжения

От скачков напряжения перегорают лампочки, выходит из строя бытовая техника и даже может произойти аварийная ситуация в квартирной электропроводке. Повышенное напряжение наблюдается при перекосе фаз и других проблемах на линии. Давайте разбираться, как можно защитить электрооборудование квартиры от превышения напряжения.

Итак, по каким причинам происходит превышение напряжения в сети?

2. Импульсные перенапряжения или т.н. скачки напряжения.

3. Колебания, вызванные разницей нагрузки в разное время суток или время года.

Стоит отметить что в ГОСТ 29322-2014 сказано: «напряжение питания не должно отличаться от номинального напряжения системы больше чем на ±10%» что для 220В лежит в пределах 198-242В.

Перекос фаз

Происходит в результате полного отгорания нулевого проводника на вводе в дом, квартиру или от ТП, или сильного ухудшения его контакта. При этом все однофазные потребители, которыми в большинстве случаев являются квартиры, оказываются соединёнными последовательно на Uлинейное.

Тогда напряжение между ними распределяется по закону Ома, где в качестве сопротивления R выступает приведенное сопротивления подключенной в квартирах нагрузки. Если сказать простым языком, то там, где подключено мало приборов и они маломощные напряжение будет высоким, а где подключены мощные обогреватели – низким.

Кстати, при отгорании нуля на вводе характерно такое явление как «две фазы в розетках».

Импульсные перенапряжения

Часто возникают в результате включения отключения мощных электроприборов или их группы. К этой же причине относятся и сварочные работы, чаще всего такое случается в частном секторе, когда какой-нибудь домашний мастер в очередной раз решает «подварить» ворота или забор.

Также скачки в питающей сети могут возникать из-за плохого контакта на воздушной линии электропередач (ВЛЭП),

Из-за погодных условий, таких как ветер, метель, ливень, гроза также может «прыгать» напряжение. Это происходит из-за их воздействия на ВЛЭП.

Сезонные или суточные колебания

В разное время суток происходят колебания напряжения из-за того, что изменяется нагрузка, например, вечером, когда люди приходят с работы они включают электроплиты, обогреватели и другие электроприборы, ток возрастает и в результате происходят просадки напряжения, а ночью, когда все спят и нагрузка уменьшается – напряжение может наоборот быть повышенным.

Летом также может повышаться напряжение, потому что отключаются электрокотлы и прочая техника. Хотя в городах летом наблюдаются просадки напряжения в связи с тем, что повсеместно начинают работать кондиционеры.

Если сказать простым языком, то колебания напряжения обусловлены тем, что на подстанции есть возможность регулировки напряжения либо с помощью переключения проводов к отводам обмоток, либо с помощью специальных систем. Так для того, чтобы обеспечить какой-то усредненный уровень напряжения под определенной нагрузкой и устанавливается определенное его значение. В результате, когда нагрузка большая – оно может проседать, а когда нагрузка маленькая – наоборот, повышаться.

Последствия

В результате длительных повышенных напряжений на нагревательных приборах выделяется большая мощность, что сокращает срок службы. При значительных превышения могут выходить из строя полупроводниковые и другие электронные компоненты бытовой техники – диоды, транзисторы и конденсаторы входных фильтров.

Последствия импульсных перенапряжений в сущности такие же, но амплитуда импульсов в этом случае может достигать нескольких киловольт.

Вероятны разные развития событий:

Перегорание предохранителей электроприборов;

Выход из строя компонентов схемы;

Срабатывание автоматических выключателей;

В самых негативных случаях возможны и возгорания.

Способы защиты

Чтобы обезопасить квартиру от превышения напряжения используют либо стабилизаторы, которые нормализируют напряжения до нормального уровня, либо отключают питание при критических параметрах сети.

В связи с этим можно выделить два вида приборов:

Регулирующие (стабилизаторы или ручные ЛАТРы);

Коммутирующие (РКН, РН, УЗМ и пр.).

Рассмотрим их особенности по отдельности.

Реле напряжения

Под названием «реле напряжения» на современном рынке представлено множество устройств, начиная от «безымянного» Китая, заканчивая популярными и общепризнанными моделями, так можно выделить следующие:

Есть встроенное реле для отключения цепи;

Следит за напряжением в сети;

Вы можете установить верхний и нижний предел допустимых напряжений питания;

Когда напряжение в электросети станет больше или меньше установленных пределов – реле отключится и защищаемая цепь обесточится. Это может быть, как отдельный электроприбор, так и вся квартира;

Не спасает от импульсных перенапряжений;

Защищает только от повышенного или пониженного напряжения.

В зависимости от модели, устройство может работать как реле:

Максимального и минимального напряжения.

Такой функционал позволяет обеспечить защиту только от повышенного или пониженного напряжения, что уменьшит число отказов или отключений электроустановки. В некоторых случаях пониженные значения питающей сети являются допустимыми для работы, а в некоторых наоборот (например, электродвигателя не «любят» пониженного напряжения – сильно снижается момент и растёт ток).

Для установки на DIN-рейку в электрощит;

Для подключения в розетку (розеточные реле).

По числу фаз – однофазные и трёхфазные. При сборе трёхфазного щита также можно использовать три однофазных реле напряжения.

Оба исполнения одинаково хороши – розеточным реле можно обезопасить отдельное устройство, например, установив прибор для защиты холодильника, или группу устройств, например, компьютер подключенный через удлинитель.

Рассмотрим некоторые популярные модели для монтажа на DIN-рейку:

РН-106 или РН-104 – модели отличаются только номинальным током – 63 и 40 А соответственно. Диапазон регулирования срабатывания по Umin (минимальное напряжение) от 160 до 210 В, а по Umах от 230 до 280В. Также настраивается время, через которое произойдет автоматическое повторное включение (также называют АПВ или задержка включения) – от 5 до 900 с. У прибора удобные и интуитивно понятные органы регулировки.

Схема подключения довольно стандартна для аналогичных приборов.

РН-111М и РН-113М – это реле напряжения от того же производителя, но более позволяет применять его в большем диапазоне задач, ограничивать только максимальное или минимальное напряжение, или оба порога срабатывания. Главное 111 и 113-й модели – номинальный ток 16 и 32А соответственно, а также РН-113М занимает на 1 модель в щите больше чем 111М. Остальные характеристики у него, как и остальных устройств этого типа подобны.

Обратите внимание, что у устройства цепь питания отделена от исполнительной цепи, а на выходе стоит реле с нормально-замкнутым контактом, что также позволяет реализовать большее число схем защитной автоматики.

На примере РН-113М схема подключения может быть выполнена в двух вариантах, в зависимости от выполняемой функции (ограничение верхнего, нижнего или обоих уровней напряжения). Для РН-111М – аналогично.

Учтите, что реле напряжения должно быть установлено в цепи защищенной автоматическим выключателем (на схеме QF), поскольку функции защиты от перегрузки в подавляющем большинстве моделей нет.

Для увеличения мощности, которую коммутирует реле – используйте контактный пускатель, подключив его катушку вместо нагрузки, а саму нагрузку к силовым контактам КМ.

Устройство защиты от импульсных перенапряжений (УЗИП) используется для защиты не от повышенного напряжения, а от высоковольтных скачков (импульсов). Представляют собой устройства, которые при возникновении импульсного перенапряжения величиной в несколько киловольт сбрасывают энергию импульса на землю.

Пример такого устройства является ОИН – ограничитель импульсных перенапряжений. Внутри которого установлен варистор.

Как уже было сказано, устройство подключается между фазным и защитным проводником. В случае использования системы TN-C (без заземления) – допускается установка между фазой и нулем после автомата.

Главным недостатком перечисленных устройств является то, что они условно одноразовые. Если энергия высоковольтного импульса была больше той, что может рассеять варистор в ОИН, то он выйдет из строя.

Но учтите, что установка таких приборов как УЗИП должна быть проведена только после консультации с опытным электриком. Поскольку сам по себе прибор может представлять опасность, если установлен, например, до автоматического выключателя, тогда ток КЗ, в случае пробоя УЗИП будет очень высоким, а отключить цепь сможет только ближайший автоматический выключатель, и будет очень плохо, если последний окажется аж в КТП. Также нельзя забывать и о том, что УЗИП может сработать и по причине естественного старения.

Хочется сказать отдельное слово о таких устройствах как УЗМ-50Ц и его аналогах производства ЭКМ «МЕАНДР», это комбинированное устройство, оно обеспечивает и функции реле напряжения, и защиты от высоковольтных импульсов, и вольт-амперметра. При этом производитель рекомендует использовать его совместно с полноценным УЗИП. Это обусловлено малой мощностью варистора. Технические характеристики приведены ниже:

На корпусе прибора кроме органов управления (двух кнопок) расположен трёхразрядный индикатор, на котором выводятся параметры при настройке, состояние и текущее напряжение, ток или потребляемая мощность.

Схема подключения достаточно простая, она приведена ниже.

Стабилизатор

И наконец для обеспечения стабильного напряжения в бытовой сети, а также защиты от скачков напряжения применяются стабилизаторы напряжения. Они бывают:

Самый дешевый вариант – релейные, а самый дорогой – инверторные. Стоит отметить что феррорезонансные приборы в настоящее время используются редко. Они использовались во времена СССР для питания телевизоров. Одним из популярных производителей является отечественная «РЕСАНТА», пример продукции которой вы видите ниже.

Релейные, электронные и электромеханические стабилизаторы построены на базе автотрансформатора, отличается лишь способ переключения отводов от его обмоток. Переключение может осуществляться с помощью:

сервопривода и подвижной щетки (электромеханические);

Подробнее мы рассматривали их принцип работы и виды в статье — Сетевые стабилизаторы напряжения 220В

Если кратко, то стабилизатор сетевого напряжения – это устройство, которое поддерживает одинаковое значение выходного напряжения при изменении входного, в установленных конструкцией пределах. Регулировка происходит плавно (сервоприводные приборы) и с заданным шагом (релейные или электронные).

По мощности эти приборы бывают как маломощные – на 500 Вт, для питания отдельных приборов, так и способные защитить всю квартиру – мощностью больше 10 кВт. По количеству фаз – однофазные и трёхфазные. На фото ниже вы можете наблюдать трёхфазную модель «РЕСАНТА АСН-15000/3-ЭМ», мощностью в 15 кВт.

Посетители часто спрашивают «что лучше стабилизатор или реле напряжения?». На этот вопрос нельзя дать однозначный ответ, поскольку это разные приборы. Но если вы установите реле напряжения перед стабилизатором, то обезопасите не только электросеть вашего дома, но и сам дорогостоящий стабилизатор. В то время как для защиты отдельных электроприборов можно использовать как стабилизаторы, так и розеточные реле напряжения, так и эти устройства в паре.

Источник

Оцените статью
Adblock
detector