Сульфидное коррозионное растрескивание под напряжением это

Коррозионное растрескивание под напряжением

Коррозийное растрескивание под напряжением (КРПН) – это растрескивание, вызванное комбинированным воздействием растягивающего напряжения и коррозионности среды. Воздействие КРПН обычно проявляется на свойствах металла в виде (так называемого) «сухого» растрескивания или в виде снижения порога усталости материала. Растягивающие напряжения могут быть как в форме непосредственно прилагаемого напряжения или в виде остаточного напряжения.

Коррозионное растрескивание под напряжением (КРПН) характеризуется трещинами, распространяющимися либо транскристаллически, либо межкристаллитно (вдоль границ зерен). Существует несколько типов коррозионного растрескивания под напряжением (КРПН), например: КРПН, вызываемое хлоридом, и КРПН, вызываемое сероводородом (H2S).

Коррозионное растрескивание под напряжением (КРПН) является результатом комбинированного действия трех факторов:

  • Растягивающее напряжение в металле
  • Агрессивные среды — особенно хлоридсодержащие или сероводородсодержащие (H2S) среды. КРПН, вызываемое хлоридом, обычно происходит при температуре выше 60 °C (140 °F)
  • Использование восприимчивых к коррозионному растрескиванию под напряжением (КРПН) материалов

Коррозионному растрескиванию под напряжением изделий из нержавейки в хлоридсодержащей среде предшествует точечная коррозия, которая происходит в том случае, когда нержавеющая сталь не обладает достаточной устойчивостью к точечной коррозии. Таким образом в металле появляются трещины, которые со временем увеличиваются. В конечном итоге это приводит к потере контакта между зернами металла.

Причины коррозионного растрескивания под напряжением (КРПН)

Образование трещин в металле происходит в местах напряжения.

Этот процесс предполагает ускоренную коррозию вдоль траектории повышенной коррозийной восприимчивости, при этом основная часть материала, как правило, не подвергается коррозийному разрушению. Чаще всего активная траектория проходит по границе зерна, где примеси могут затруднять пассивирование.

Таким образом, может развиться некоторая форма щелевой коррозии, в результате чего будет корродировать граница зерна, а поверхность вокруг трещины останется цельной. Этот процесс может происходить при отсутствии нагрузки, и приводить к межкристальной коррозии, которая равномерно распространится по поверхности материала. Эффект от приложенного напряжения, вероятно, заключается в основном в раскрытии трещин, а следовательно в облегчении процесса распространения продуктов коррозии по направлению — от вершины трещины – что, в свою очередь, также приведёт к ускорению процесса коррозии. Коррозионные процессы вдоль активной траектории по своей природе ограничены скоростью коррозии металла на вершине трещины: это ограничивает максимальную скорость роста трещин до 10-2 мм/с, но темпы роста трещин зачастую гораздо ниже, примерно около 10-8 мм/с (около 1 мм в течение 3-х лет) или даже меньше.

Холодная деформация и формовка, сварка, термообработка, механическая обработка и шлифовка могут быть причинами возникновения остаточных напряжений. Величина и важность таких напряжений часто недооценивается. Остаточное напряжение, появившееся в результате сварочных работ, как правило, стремится к (условному) пределу текучести. Рост количества продуктов коррозии в закрытых пространствах также может вызывать значительные нагрузки и этот аспект нельзя упускать из виду. КРПН обычно происходит в результате влияния комбинации трёх факторов: чувствительности сплава, неблагоприятной окружающей среды и воздействия нагрузки.

Как правило, большая части поверхности не подвержена разрушительной силе коррозии, однако мелкие трещины все же способны проникать в материал. По своей микроструктуре эти трещины могут иметь межкристальную или транскристальную морфологию. Трещины под воздействием КРПН макроскопически обладают хрупким внешним видом. КРПН классифицируется как катастрофический вид коррозии в связи с тем, что обнаружение таких мелких трещин может быть весьма затруднено, а ущерб от их возникновения предсказать очень не просто. Экспериментальные статистические данные о КРПН печально известны своим широким разбросом. Ужасное разрушение может произойти совершенно неожиданно даже при минимальной общей потере материала.

Микрофотография (X500) иллюстрирует межкристаллическую КРПН в трубе теплообменника с трещиной по границам зерен. Микрофотография (X300) иллюстрирует КРПН в трубопроводной системе химической обработки из нержавеющей стали AISI 316. Трещины от хлоридной коррозии под напряжением в аустенитной нержавеющей стали характеризуются несколькими разветвленными «молниями».

КРПН под воздействием хлорида

Это одна из самых важных форм коррозии под напряжением: она имеет отношение к коррозии под воздействием хлорида в атомной отрасли. Коррозия под воздействием хлорида является разновидностью межкристаллитной коррозии, которая происходит в аустенитной нержавеющей стали под растягивающим напряжением в присутствии кислорода, ионов хлорида и высокой температуры. Считается, что она начинается с того, что карбид хрома накапливается вдоль границ, которые делают металл не защищённым от коррозии. Эта форма коррозии контролируется сохранением низкого уровня ионов хлорида и кислорода в окружающей среде, а также использованием низкоуглеродистой стали.

Читайте также:  Стабилизатор напряжения акн 1 600 зорд инструкция

Коррозийное растрескивание под напряжением вызываемое H2S
Технологические жидкости, применяемые в нефтяной и газовой промышленности для увлажнительных и окислительных работ, часто содержат определенное количество сероводорода (H2S). При рассмотрении риска возникновения коррозии, вызываемой кислыми технологическими жидкостями, необходимо принимать во внимание не только величину рН, но и парциальное давление H2S. Кроме того, стоит обращать внимание на температуру, содержание кислорода и хлора, а также на присутствие каких-либо твердых частиц (таких как песок).

Подтверждается, что коррозионное растрескивание под напряжением, вызываемое H2S, чаше всего протекает при температуре около 80 °C (176 °F), но растрескивание может произойти и при температуре ниже 60 °C (140 °F).

Как сократить риск коррозионного растрескивания под напряжением (КРПН)

Риск коррозионного растрескивания под напряжением (КРПН) можно свести к минимуму за счет качественного проектирования оборудования и инвентаря. Особенно важно избегать концентрации механического напряжения растяжения, которое появляется на острых кромках и вырезах. Во многих случаях проблемы коррозионного растрескивания под напряжением (КРПН) могут быть решены путем правильного выбора подходящего материала.

Наиболее эффективными средствами для предотвращения КРПН являются:

  1. правильное использование соответствующих металлов;
  2. снижение напряжения;
  3. устранение критически-значимых элементов из окружающей среды: гидроксидов, хлоридов и кислорода;
  4. избегание застойных зон и щелей в теплообменниках, где могут концентрироваться хлорид и гидроксид. Низколегированная сталь менее восприимчива, чем высоколегированная, но она может быть подвержена КРПН благодаря воде с содержанием ионов хлорида.

Аустенитные стали типа ASTM304 и 316 имеют ограниченную стойкость к коррозионному растрескиванию под напряжением (КРПН) даже при очень низком содержании хлора и низких температурах.

Источник

Сульфидное растрескивание

В виду особой опасности преждевременного разрушения сосудов и аппаратов давления, резервуаров, трубопроводов, подвергаемых воздействию коррозионно-активных жидких сред с компонентами сульфидов, этот вид коррозионного растрескивания получил название «сульфидного коррозионного растрескивания под напряжением» или «сульфидного растрескивания».

Для случаев, когда при технологических процессах среда содержит значительное количество сероводорода, чаще всего используют термин «сероводородное растрескивание». Компоненты углеводородной фазы (бензин, пропан, этан, углеводородные газы и т.д.), повышая растворимость H2S, вызывают растрескивание в условиях, вызывающих образование водной фазы на металлической стенке элементов конструкции. Растворимость сероводорода в среде при 30°С и Ph2s

Наиболее агрессивным компонент водных сред — сероводород. Он увеличивает скорость коррозии оборудования в десятки раз по сравне нию со средами, не содержащими его соединений. Растворяясь в воде, сероводород диссоциирует на ионы

Равновесие этой реакции сдвигается влево или вправо в зависимости от pH среды. При температуре воды +20 °С сероводород обладает хорошей растворимостью (2,5 г/л), снижая pH.

В нейтральных и щелочных средах содержится больше ионов гидросульфидов, а в кислых средах — молекулярного сероводорода. В сильнощелочных электролитах образуются в небольших количест

вах ионы сульфидов [197]. В водяной фазе сероводород ускоряет анодную реакцию ионизации железа:

С образованием хемосорбционного катализатора Fe(HS) , который адсорбирует на поверхности металла, происходит ослабление связи между атомами железа, что облегчает их ионизацию.

Возникшие ионы двухвалентного железа взаимодействуют с сульфидами:

В результате реакции происходит сдвиг электродного потенциала железа в отрицательную сторону и увеличение скорости анодного процесса коррозии.

Считают [197, 198], что последняя стадия катодного процесса является контролирующей. Сероводород непосредственно в катодной реакции не участвует, а играет роль катализатора, ускоряющего разряд ионов водорода. Восстановленные атомы водорода частично рекомбинируют и диффундируют в металл, вызывая водородную хрупкость.

Каталитическое действие сероводорода в наводороживании сталей связывают с торможением процесса выделения водорода и облегчением процесса молизации водородных атомов. При этом существенно увеличивается концентрация атомов водорода, образующихся при разряде адсорбированных на поверхности стали молекул сероводорода. Адсорбция на поверхности металла гидросульфида ослабляет связи между поверхностными атомами, заметно облегчая проникновение водорода в металл.

Склонность к сульфидному растрескиванию возрастает с ростом уровня предела текучести стали, растягивающих напряжений и содержания в среде сульфидов. Как правило, сульфидное растрескивание возникает в средах, содержащих сероводород с парциальным Давлением более 0,3 кПа.

Усилению влияния сероводорода на металл способствует увеличение его содержания в ряде месторождений нефти и газа. Так, в Нефтяном газе, поступающем на нижневартовские газоперерабатыва-

ющие заводы, содержание H2S с 1975 по 1984 г. увеличилось с 0,005 до — 8 г/100 м3 [199]. Молярная доля С02 в нефтяном газе, транспортируемом на газоперерабатывающие заводы, 0,2-0,3%. При таком содержании агрессивных компонентов в среде влажного нефтяного газа и конденсата, образующегося при его сжатии и охлаждении, скорость коррозии углеродистых и низколегированных сталей превышает 0,5 мм/год.

Читайте также:  Tip42a регулятор напряжения схема

Склонность к сульфидному коррозионному растрескиванию металла сварных швов трубных сталей существенно зависит от содержания серы (0,002 — 0,028% ) и химического состава стали [200].

К характерным особенностям сероводородного растрескивания следует отнести возможность обнаружения в изломе множественных очагов зарождения трещин.

Испытывают стали на стойкость против сульфидного коррозионного растрескивания по методикам NACE ТМ 01-77 или МСКР 01-85, регламентирующим определение времени до разрушения образцов при их растяжении. База испытаний 30 сут.

Особо склонны к сульфидному растрескиванию сварные соединения. Этому благоприятствуют ряд факторов, таких как химическая и структурная неоднородность металла, присутствие дефектов и геометрических концентраторов в сварном шве, высокий уровень остаточных сварочных напряжений (рис. 5.81). Металлографический анализ показывает, что в околошовной зоне стали 09Г2С трещина распространяется предпочтительно по границам зерен.

Сульфидное растрескивание диагностируется по появлению сетки (колонии) мелких микротрещин разных глубин и протяженности и, главное, — по появлению пузырчатости на поверхности стенок силового элемента. Наиболее удивительное явление — образование пузырей (отдулин) на поверхности стенок аппаратов и сосудов давления. Вследствие наводороживания на плоскостях прокатки, как правило

Рис. 5.81. Трещина в околошовной зоне стыкового соединения трубопровода для транспортировки сероводородсодержащей (4,8%) среды. х1,2

в месте залегания раскатанных неметаллических включений, газовых пузырей, образуются микротрещины.

Нередко процесс ускоренного распространения трещин по системе параллельных плоскостей проката и их постепенного ступенчатого объединения в магистральную называют «ступенчатым растрескиванием ».

Рис. 5.82. Схема образования отдулин 1 и последующего трещинообразования (2 — полость, 3 — слоистые трещины)

Низкотемпературное сероводородное растрескивание сталей довольно часто встречается при переработке сырой нефти. Чаще всего оно выявляется на установках АВТ, АТ, термического и каталитического крекинга, ГФУ и т.д., в которых при эксплуатации в среде нефтепродуктов присутствует H2S в водной среде. Наиболее вероятно трещинообразование двух видов: растрескивание и расслоение. Наиболее опасно растрескивание, поскольку оно, как правило, развивается в основном в направлении толщины стенки и быстро оказывается сквозным.

Практика эксплуатации оборудования показывает, что одновременно растрескивание и расслоение с образованием отдулин встречается редко.

Расслоение металла выявлено [201] для разных аппаратов, соприкасающихся: с тяжелыми (керосино-газойлевыми) фракциями — 10% числа обследуемых аппаратов; нестабильным и стабильным (но не очищенным от сероводорода) бензинами — 11,1 и 9%; углеводородными газами с установок прямой гонки, термического и каталитического крекинга — 13%; со сжиженными фракциями пропана и бутана — 30 и 4,4%. Наиболее высокий процент аппаратов с расслоением металла (30%) приходится на пропановую фракцию.

Аппараты с расслоившимся металлом были изготовлены из углеродистых сталей СтЗ и 20 и низколегированных 09Г2С и 16ГС. Наибольшая доля (44,5%) аппаратов с расслоениями приходится на изготовленные из низколегированных сталей (по сравнению с 12,2% числа аппаратов из углеродистых сталей). Явление расслоения характеризуются следующими особенностями: в эксплуатационном диапазоне 30-150°С отсутствует связь температуры с числом аппаратов, имеющих расслоения; при достаточно высоких концентрациях сероводорода и сохранении водной фазы не выявлено влияние давления на расслоение; отдулины появляются в основном в нижней части корпуса аппарата, хотя отмечены случаи их возникновения в верхних частях (возможно, из-за конденсации влаги на всей внутренней поверхности аппарата); относительно короткий срок службы аппаратов до появления расслоений (чаще всего 5-7 лет, пропановых — до 1 года).

При массовом обследовании аппаратов [201] выявлено, что диаметры отдулин варьируются от еле заметных невооруженным глазом до ^250 мм. В ряде случаев отмечено трещинообразование этих отдулин с шириной раскрытия трещин 1-3 мм. Химический анализ газа из пузырей показал, что он на 99,3% состоит из водорода.

Сероводородное растрескивание существенным образом зависит от уровня прочности стали. По-видимому, растрескивание не происходит при некотором критическом уровне прочности стали. Однако этот уровень может зависеть от состава коррозионно-активной среды и структуры стали. При переходе от феррито-перлитной к бейнитной и особенно к мартенситной структуре возрастают внутренние микронапряжения. Согласно обстоятельным изысканиям [201] по разным источникам, критический уровень твердости сталей, ниже которого в сероводородной среде не возникает растрескивание, составляет HRC 20-22. Эти данные нашли отражение в рекомендациях Американской организации NACE — Национального объединения инжене- ров-коррозионистов, согласно которым для изготовления элементов нефтяного оборудования, эксплуатируемого в условиях сероводородного растрескивания металлов (т.е. при наличии в среде сероводорода и воды), можно применять стали с HRC sS 22.

Сварные соединения отличаются повышенной склонностью к сероводородному растрескиванию. Этому способствуют ряд факторов: более высокий уровень напряжений в металле шва и зоне термического влияния; сварочные дефекты в металле шва, вызывающие в окружающем объеме концентрацию напряжений; сварка материалами, существенно отличающимися по химическому и фазовому составам от основного металла.

Читайте также:  Тс106 10 схема простого регулятор напряжения

По данным [201], образцы из низколегированной стали 12Х1МФ со сварными швами, выполненными с использованием аустенитных электродов, подвергались катастрофически быстрому (10-20 ч) сероводородному растрескиванию. Сквозные трещины располагались точно по границе раздела металл—сварной шов.

При диагностировании состояния металла в сварных соединениях следует в первую очередь обращать внимание на участки с максимальной твердостью. Часто этими участками являются зоны термического влияния. При оценке вероятности сероводородного растрескивания крупногабаритного оборудования наибольшее внимание должно быть уделено зонам, в которых при наличии водной фазы и H2S наиболее низки значения pH.

Ввиду наличия в Оренбургском газоконденсатном месторождении сероводорода (1,4-4,7%) оборудование по добыче, транспортировке и переработке подвержено сульфидному растрескиванию. По данным [201], растрескиванием было поражено 15,4% трубопроводов, 0,2% оборудования (котлы, реакторы, вентили, насосы и т.д.) и 64,5% деталей (лопатки турбин, пружины, плунжеры, клапаны, валы, крепежные изделия) ОГХК.

Опасное влияние сероводорода на растрескивание проиллюстрируем разрушением верхнего днища десорбера К-7 установки 24/7 в 1998 г. в ОАО «Горькнефтеоргсинтез» [202]. На установке проводились пусконаладочные работы после капитального ремонта. Блок очистки и регенерации МЭА находился на циркуляции раствора МЭА с подъемом температуры низа десорбера (колонны) К-7 со скоростью 15 °С/ч. При температуре низа колонны 110 °С и давлении 120 кПа замечено парение у верхнего штуцера.

При осмотре верхнего сварного (с хордовым швом) днища десорбера К-7 из аустенито-ферритной стали 08Х22Н6Т обнаружили восемь трещин. Две (длиной 300 и 400 мм с максимальным раскрытием 0,5 мм) были выявлены в зоне термического влияния сварного шва штуцера диаметром 350 мм, они уходили в основной металл; трещина в зоне термического влияния Dy 100 на наружной поверхности днища имела длину 120 мм с максимальным раскрытием 0,5 мм и глубину 2-3 мм (рис. 5.83); трещина в зоне термического влияния штуцера диаметром 50 мм была длиной 60 мм с максимальным раскрытием 0,4 мм. Еще четыре трещины были обнаружены в околошовной зоне кольцевого шва приварки днища к обечайке. По виду излома все трещины имели кристаллическое строение, следы пластической деформации вдоль их траектории трещины отсутствовали.

Согласно паспортным данным, десорбер высотой 19280 мм был изготовлен Черновицким машиностроительным заводом в 1992 г., эксплуатировался 1,2 мес. со следующими технологическими параметра- ми: Рраз= 150 кПа, t = 130 °С; рабочая среда: Н20 (87,98%), H2S (4,8%), МЭА (7,2%).

Рис. 5.83. Общий вид трещины, образовавшейся в месте приварки штуцера DylOO к верхнему днищу колонны К-7

По химическому составу и механическим свойствам при растяжении и ударном изгибе сталь верхнего днища 08Х22Н6Т удовлетворяла требованиям ГОСТ 5632-72. Изломы фрагментов днища имели преимущественно крупнокристаллический характер; размер отдельных зерен достигал 1-3 мм. На кромках изломов с внутренней стороны днища (на глубине 1,5-6,5 мм) были обнаружены продукты коррозии.

При металлографическом исследовании выявлено, что: основной металл имел два характерных типа микроструктуры — крупнозернистую с размером ферритного зерна 100-300 мкм с развитой субструктурой при содержании до 10% аустенита в виде островков в теле и по границам зерен, а также мелкозернистую (d = 21-24 мкм) полосчатую микроструктуру с содержанием аустенита 40-60% (рис. 5.84, а, б); поверхность днища неоднородна по структуре и фазовому составу, с вариацией размеров зерен по толщине проката в 40 раз и содержания аустенита в 80 раз (рис. 5.84, в: светлые поля — крупнозернистая структура, темные — мелкозернистая); в околошовной зоне приварки штуцеров к днищу и хордового шва зерна феррита достигали 300-500 мкм при практически полном отсутствии аустенита по мере приближения к зоне сплавления (рис. 5.85).

Рис. 5.85. Панорамная микроструктура околошовной зоны хордового шва в верхнем днище колонны К-7. х 70

Объемное содержание аустенита со стороны корня сварного шва приварки штуцера диаметром 350 мм по мере удаления от линии сплавления:

Расстояние от корня шва, мм lt; 0,25 lt; 0,50 ^10 ^3

Содержание аустенита,% 0,4 ± 0,2 0,6 ± 0,2 5,0 ± 0,6 8,0 ±1,0

Высокое сопротивление хрупкому разрушению основного металла и околошовной зоны, удаленной на расстояние от зоны сплавления не менее чем на 3±4 мм, обусловлено наличием в структуре стали 08Х22Н6Т островков аустенита. Критическая температура хрупкости 7\0 стали, определенная по наличию в изломе 50% волокнистой составляющей, изменяется от +5 до +32 °С (табл. 5.13).

Источник

Оцените статью
Adblock
detector