Таблица допустимых токов в трансформаторе

Содержание
  1. Правильный выбор трансформатора тока по ГОСТу
  2. Выбор номинальных параметров трансформаторов тока
  3. Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ
  4. Выбор ТТ для релейной защиты
  5. Выбор трансформаторов тока для цепей учета
  6. Таблица предварительного выбора трансформатора тока по мощности и току
  7. Перегрузка силовых трансформаторов (длительная допустимая и кратковременная аварийная)
  8. 1. Допустимая длительная перегрузка силовых трансформаторов по ПТЭ
  9. 2. Аварийная кратковременная перегрузка трансформатора по ПТЭ
  10. 3. Аварийная кратковременная перегрузка трансформатора по Приказу Минэнерго РФ N250 от 06.05.2014 г.
  11. 4. Аварийная кратковременная перегрузка трансформатора по ГОСТ 14209-97 (упрощенные таблицы)
  12. Система охлаждения трансформаторов
  13. Перечень НТД по вопросу перегрузки трансформаторов

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Читайте также:  Трансформаторы тот справочные данные

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

Читайте также:  Трансформатор тфу 500 схема

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Источник

Перегрузка силовых трансформаторов (длительная допустимая и кратковременная аварийная)

Перегрузка силовых трансформаторов важный параметр, необходимый как при проектировании, так и при эксплуатации электрических станций и подстанций

В статье представлены действующие нормативные документы, на основании которых определяются допустимые перегрузки трансформаторов

1. Допустимая длительная перегрузка силовых трансформаторов по ПТЭ

[п. 2.1.20 ПТЭП] С жидким негорючим диэлектриком 5%**

[п. 2.1.20 ПТЭП] Сухие*** устанавливаются заводской инструкцией

* — под длительно допустимой понимается сколь угодно долгая продолжительность перегрузки;

** — указана перегрузка в % номинального тока ответвления (если напряжение на ответвлении не превышает номинального)

*** — на практике сухие трансформаторы стараются не перегружать;

Кроме того, для трансформаторов в зависимости от режима работы допускаются систематические перегрузки, значение и длительность которых регламентируются типовой инструкцией по эксплуатации трансформаторов и инструкциями заводов-изготовителей [п. 5.3.14 ПТЭ ЭСС], [п. 2.1.20 ПТЭП].

2. Аварийная кратковременная перегрузка трансформатора по ПТЭ

В аварийных режимах допускается кратковременная перегрузка трансформаторов сверх номинального тока при всех системах охлаждения независимо от длительности и значения предшествующей нагрузки и температуры охлаждающей среды в следующих пределах [5.3.15 ПТЭ ЭСиС] , [п. 2.1.20 ПТЭ П]:

Масляные трансформаторы
Перегрузка по току, % 30 45 60 75 100
Длительность перегрузки, мин 120 80 45 20 10
Сухие трансформаторы
Перегрузка по току, % 20 30 40 50 60
Длительность перегрузки, мин 60 45 32 18 5

3. Аварийная кратковременная перегрузка трансформатора по Приказу Минэнерго РФ N250 от 06.05.2014 г.

В соответствии с Приложением №1 «Методических указаний по определению степени загрузки вводимых после строительства объектов электросетевого хозяйства»(утв. Приказом Минэнерго РФ N250 от 06.05.2014 г):

Допустимые аварийные перегрузки для силовых (авто-) трансформаторов различной системы охлаждения в зависимости от температуры (°С) охлаждающей среды (в долях от номинального тока)

Температура (°С) охлаждающей среды Система
охлаждения
М, Д ДЦ, Ц
Для трансформаторов со сроком эксплуатации менее 30 лет
-20°С и ниже 1,5 1,5
-10°С 1,5 1,4
0°С 1,4 1,4
10°С 1,3 1,3
20°С 1,3 1,2
30°С 1,2 1,2
40°С 1,1 1,1
Для трансформаторов со сроком эксплуатации более 30 лет
-20°С и ниже 1,2
-10°С 1,2
0°С 1,15
10°С 1,0
20°С 1,0
30°С 1,0
40°С 1,0

4. Аварийная кратковременная перегрузка трансформатора по ГОСТ 14209-97 (упрощенные таблицы)

Продолж. перегрузки в течение суток, ч Перегрузка в долях номинального тока, в зависимости от температуры охлаждающей среды во время перегрузки
-25°С ONAN ON OF OD
0,5 2,0 1,8 1,6 1,4
1,0 1,9 1,7 1,6 1,4
2,0 1,9 1,7 1,5 1,4
4,0 1,8 1,6 1,5 1,4
8,0 1,7 1,6 1,5 1,4
24,0 1,7 1,6 1,5 1,4
-20° C ONAN ON OF OD
0,5 1,9 1,7 1,6 1,5
1,0 1,9 1,6 1,5 1,4
2,0 1,8 1,6 1,5 1,4
4,0 1,7 1,6 1,5 1,4
8,0 1,7 1,5 1,5 1,4
24,0 1,6 1,5 1,5 1,4
-10° C ONAN ON OF OD
0,5 1,7 1,6 1,5 1,4
1,0 1,7 1,5 1,5 1,4
2,0 1,7 1,5 1,5 1,3
4,0 1,6 1,5 1,4 1,3
8,0 1,6 1,5 1,4 1,3
24,0 1,6 1,5 1,4 1,3
0° C ONAN ON OF OD
0,5 1,7 1,5 1,4 1,3
1,0 1,7 1,5 1,4 1,3
2,0 1,6 1,5 1,4 1,3
4,0 1,6 1,4 1,4 1,3
8,0 1,6 1,4 1,4 1,3
24,0 1,5 1,4 1,4 1,3
10° C ONAN ON OF OD
0,5 1,7 1,4 1,4 1,3
1,0 1,6 1,4 1,4 1,3
2,0 1,5 1,4 1,3 1,2
4,0 1,5 1,3 1,3 1,2
8,0 1,5 1,3 1,3 1,2
24,0 1,5 1,3 1,3 1,2
20° C ONAN ON OF OD
0,5 1,5 1,3 1,3 1,2
1,0 1,4 1,3 1,3 1,2
2,0 1,4 1,3 1,3 1,2
4,0 1,4 1,3 1,2 1,2
8,0 1,4 1.3 1,2 1,2
24,0 1,4 1,3 1,2 1,2
30° C ONAN ON OF OD
0,5 1,4 1,2 1,2 1,2
1,0 1,3 1,2 1,2 1,2
2,0 1,3 1,2 1,2 1,2
4,0 1,3 1,2 1,2 1,1
8,0 1,3 1,2 1,2 1,1
24,0 1,3 1,2 1,2 1,1
40° C ONAN ON OF OD
0,5 1,3 1,2 1,2 1,2
1,0 1,3 1,2 1,2 1,1
2,0 1,3 1,2 1,1 1,1
4,0 1,2 1,2 1,1 1,1
8,0 1,2 1,1 1,1 1,1
24,0 1,2 1,1 1,1 1,1
Читайте также:  Камера силового трансформатора что это
Продолж. перегрузки в течение суток, ч Перегрузка в долях номинального тока, в зависимости от температуры охлаждающей среды во время перегрузки
-25°С ONAN ON OF OD
0,5 2,0 2,0 1,9 1,7
1,0 2,0 2,0 1,7 1,6
2,0 2,0 1,9 1,7 1,5
4,0 1,9 1,7 1,6 1,5
8,0 1,7 1,6 1,6 1,4
24,0 1,7 1,5 1,6 1,4
-20° C ONAN ON OF OD
0,5 2,0 2,0 1,8 1,6
1,0 2,0 2,0 1,7 1,5
2,0 2,0 1,9 1,6 1,4
4,0 1,8 1,6 1,5 1,4
8,0 1,7 1,5 1,5 1,4
24,0 1,7 1,5 1,5 1,4
-10° C ONAN ON OF OD
0,5 2,0 2,0 1,7 1,6
1,0 2,0 1,9 1,6 1,5
2,0 1,9 1,8 1,5 1,4
4,0 1,7 1,6 1,5 1,3
8,0 1,6 1,5 1,4 1,3-
24,0 1,5 1,5 1,4 1,3
0° C ONAN ON OF OD
0,5 2,0 2,0 1,7OF 1,5
1,0 2,0 1,8 1,6 1,4
2,0 1,9 1,7 1,5 1,3
4,0 1,7 1,5 1,4 1,3
8,0 1,6 1,4 1,4 1,3
24,0 1,5 1,4 1,4 1,3
10° C ONAN ON OF OD
0,5 2,0 1,9 1,6 1,5
1,0 1,9 1,7 1,5 1,4
2,0 1,8 1,5 1,4 1,3
4,0 1,6 1,4 1,3 1,2
8,0 1,5 1,3 1,3 1,2
24,0 1,5 1,3 1,3 1,2
20° C ONAN ON OF OD
0,5 2,0 1,8 1,5 1,4
1,0 1,8 1,6 1,4 1,3
2,0 1,7 1,5 1,3 1,2
4,0 1,5 1,3 1,3 1 ,2
8,0 1,4 1,3 1,3 1,2
24,0 1,4 1,3 1,3 1,2
30° C ONAN ON OF OD
0,5 1,9 1,7 1,4 1,3
1,0 1,8 1,5 1,3 1,3
2,0 1,6 1,4 1,2 1.2
4,0 1,4 1,3 1,2 1,1
8,0 1,3 1,2 1,2 1,1
24,0 1,2 1,2 1,2 1,1
40° C ONAN ON OF OD
0,5 1,8 1,6 1,3 1,3
1,0 1,7 1,4 1,3 1,2
2,0 1,5 1,3 1,2 1,1
4,0 1,3 1,2 1,1 1,1
8,0 1,2 1,1 1,1 1,1
24,0 1,2 1,1 1,1 1,1

Система охлаждения трансформаторов

Обозначение Наименование
Д (ONAF) масляное охлаждение с дутьем и с естественной циркуляцией масла
М (ONAN) естественное масляное охлаждение
ДЦ (OFAF) масляное охлаждение с дутьем и с принудительной циркуляцией масла
Ц (OFWF) масляно-водяное охлаждение с принудительной циркуляцией масла
ON обозначает виды охлаждения ONAN или ONAF
OF обозначает виды охлаждения OFAF или OFWF

Перечень НТД по вопросу перегрузки трансформаторов

— «Правила технической эксплуатации электрических станций и сетей Российской Федерации», утв. приказом Министерства энергетики РФ от 19 июня 2003 г. N 229 (ПТЭ ЭСС)

— «Правила технической эксплуатации электроустановок потребителей», утв. приказом Министерства энергетики РФ от 13 января 2003 г. N 6 (ПТЭ П)

— «Методические указания по определению степени загрузки вводимых после строительства объектов электросетевого хозяйства, а также по определению и применению коэффициентов совмещения максимума потребления электрической энергии (мощности) при определении степени загрузки таких объектов», утв. приказом Министерства энергетики РФ от 6 мая 2014 г. N 250.

— ГОСТ 14209-97 «Руководство по нагрузке силовых масляных трансформаторов», введен в действие в качестве Государственного стандарта Российской Федерации с 01.01.2002

— СТО 56947007-29.180.01.116-2012 «Инструкция по эксплуатации трансформаторов», утв. приказом ОАО «ФСК ЕЭС» от 02.03.2012 № 113

— Проект норматива «Требования к перегрузочной способности трансформаторов и автотрансформаторов, установленных на объектах электроэнергетики, и ее поддержанию» (подготовлен Минэнерго России 23.07.2018)

Источник

Оцените статью
Adblock
detector