Типы корпусов стабилизаторов напряжения

Содержание
  1. СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ: ТЕОРИЯ И СХЕМЫ
  2. Виды стабилизаторов. Книга от автора
  3. 1. Виды стабилизаторов напряжения
  4. Релейные стабилизаторы напряжения
  5. Электромеханические стабилизаторы напряжения
  6. Тиристорные (симисторные) стабилизаторы напряжения
  7. Дополнительные функции стабилизаторов напряжения
  8. Книга “Всё о стабилизаторах напряжения”
  9. Скачать бесплатно авторскую книгу:
  10. Скачать инструкции к стабилизаторам напряжения:
  11. Работа электромеханического стабилизатора Suntek
  12. Статьи про стабилизаторы, опубликованные на Дзен-канале СамЭлектрик.ру
  13. Какие бывают типы стабилизаторов напряжения?
  14. Типы стабилизаторов напряжения по принципу работы
  15. Релейные
  16. Электромеханические (сервоприводные)
  17. Инверторные (бесступенчатые, бестрансформаторные, IGBT, ШИМ)
  18. Феррорезонансные
  19. Электронные (симисторные, тиристорные)
  20. Виды стабилизаторов напряжения по классу напряжения
  21. Походы к выбору стабилизатора

СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ: ТЕОРИЯ И СХЕМЫ

Напряжение в схеме постоянного тока может быть непостоянным из-за пульсаций, вызванных изменениями нагрузки (например падение напряжения после запуска двигателей). А стабилизатор напряжения — схема, поддерживающая постоянное напряжение на выходе независимо от изменения входного напряжения (в диапазоне, когда входное напряжение выше стабилизированного напряжения). В этой статье мы изучим различные типы стабилизаторов напряжения и прежде всего возьмём стабилитрон, который является простейшим стабилизирующим элементом.

Стабилитрон: а) графическое обозначение (А — анод, К — катод); b) образец детали

Принцип работы стабилитрона будет рассмотрен на примере радиоэлемента, у которого напряжение стабилизации Uz = 4,7 В, а допустимая мощность P = 1,3 Вт. По формуле легко рассчитать допустимый ток, который может протекать через него:

Imax = 1,3 Вт / 4,7 В

Imax = 276 мА

Теперь проследим, как ведет себя деталь в следующей схеме:

Принципиальная схема цепи, состоящей из источника питания B1, резистора R1 и стабилитрона D1

Первоначально стандартным источником питания будет аккумуляторная сборка, обеспечивающая общее напряжение около 6 В. Начнем с расчета сопротивления резистора R1:

R1 = UB1 / Imax

R1 = 6 В / 276 мА

Резистор R1 ограничит максимальный ток, который может протекать в цепи и достигнуть стабилитрона, что защитит его от повреждений.

Расчет резистора проводим с учетом: мощности стабилитрона, напряжения питания и тока, который должен протекать в цепи. Предположим что ток, протекающий в цепи, меньше максимального, например, I = 30 мА, то есть I = 0,03 А, напряжение стабилитрона Uz = 4,7 В, питание UB1 = 6 В.

R1 = UB1 — Uz / I

R1 = (6 В — 4,7 В) / 0,03 А = 43,3 Ом

Проследим как изменится напряжение в цепи при постепенном снижении напряжения питания UB1.

  1. UB1 > Uz. Напряжение питания UB1 имеет значение 6 В и превышает номинальное напряжение стабилитрона 4,7 В. Тем не менее, вольтметр покажет напряжение, близкое к напряжению стабилитрона, то есть 4,7 В. Это связано с тем, что падение напряжения на элементе может достигать его напряжения стабилизации, которое в данном случае составляет 4,7 В. Обратите внимание, что диод на схеме подключен наоборот, то есть в обратном направлении. Как мы знаем о диодах, они не проводят ток, если они подключены таким образом, но стабилитрон является исключением, и он должен делать это, если подаваемое на него напряжение выше, чем напряжение стабилизации. UB1 > Uz значит через диод течет электричество.
  2. UB1 = Uz. Напряжение питания UB1 равно номинальному напряжению стабилитрона с 4,7 В. Падение напряжения на нём равно напряжению питания UB1 = Uz = 4,7 В. Стабилитрон ведет себя как любой другой диод и не проводит электричество (точнее, проводит минимальный ток). На вольтметре получаем напряжение, близкое к напряжению питания UB1 = 4,7 В.
  3. UB1 Форум по обсуждению материала СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ: ТЕОРИЯ И СХЕМЫ

Несколько методов точного измерения емкости конденсаторов. Теория и практика.

Почему электрические провода нагреваются, откуда берется вообще тепло и сколько энергии теряется из-за сопротивления?

Противопомеховые фильтры — параметры, свойства, выбор подходящей схемы и радиоэлементов.

Делаем цифровой TLIA-тестер Li-Ion аккумуляторов (измеритель емкости) на Atmega8 и дисплее WH1602.

Источник

Виды стабилизаторов. Книга от автора

Cтатья написана на основе книги «Всё о стабилизаторах напряжения». Автор, Александр Румянцев, предоставил свою книгу для свободного скачивания. Книгу можно скачать ниже.

З адачей стабилизатора напряжения является стабилизация входного напряжения и очистка напряжения от различных высокочастотных колебаний. Тип стабилизатора – это тип механизма благодаря чему он это все выполняет. В статье рассмотрим различные виды стабилизаторов напряжения, их отличия, схемы, преимущества и недостатки.

1. Виды стабилизаторов напряжения

Релейные стабилизаторы напряжения

Релейные стабилизаторы получили наиболее широкое распространение из-за оптимального соотношения необходимых параметров и цены. Они имеют быстродействие от 0,2 до 0,5 с в зависимости от применяемых реле и величины скачка входного напряжения.

Из минусов – при переключении реле происходит скачок напряжения (5-15 Вольт в зависимости от количества ступеней переключения). Для техники это не существенно и безопасно, но свет будет моргать.

Поэтому при переключении стабилизатора может наблюдаться небольшое мигание лампочек накаливания. Схема релейного стабилизатора условно представлена ниже.

Как и все современные стабилизаторы напряжения его основу составляет силовой трансформатор и электронный блок. Электронный блок релейного стабилизатора напряжения представляет собой микроконтроллер, в котором происходит анализ входного и выходного напряжения и вырабатываются сигналы для управления ключами или силовыми реле стабилизатора.

При формировании управляющего напряжения микроконтроллер учитывает время срабатывания ключей и силовых реле. Это позволяет производить переключения практически без разрывов. В результате форма напряжения на выходе релейного стабилизатора повторяет форму на входе.

То есть, переключение происходит при переходе синусоиды через ноль.

Электромеханические стабилизаторы напряжения

Другое название – стабилизаторы с сервоприводом, или автотрансформаторные.

Принцип их действия следующий: плата управления анализирует входное напряжение, и в зависимости от ситуации передает сигнал на сервомотор, расположенный внутри тороидальной катушки и это мотор передвигает на необходимое количество витков токосъемную щетку.

Такой принцип действия обеспечивают более высокую точность стабилизации (2-3%, по сравнению с релейными 5-8%).

Точность зависит от количества витков трансформатора. Шаг изменения таким образом будет равен количеству вольт на один виток.

Но скорость движения щетки ограничена возможностями мотора, чаще всего скорость добавления 10-15 Вольт/сек. При скачках напряжения на 30-40 Вольт, приборы могут оказаться под опасным напряжением на несколько секунд.

И еще стоит обратить внимание, у некоторых производителей, мотор сам питается от входного напряжения и поэтому когда происходит сильная просадка напряжения ему просто не хватает питания и происходит “зависание” стабилизатора. Но для света, это оптимальный выбор, свет хоть и будет “проседать” при скачках напряжения но не так сильно как у релейного и более мягко.

Такой тип стабилизатора рекомендован в сети, где напряжение стабильно занижено или завышено, и нет резких скачков.

Тиристорные (симисторные) стабилизаторы напряжения

Принцип их работы основывается на автоматическом переключении секций (обмоток) автотрансформатора (или трансформатора) с помощью силовых ключей – тиристоров. Чем-то этот тип похож на релейные стабилизаторы, но в отличие от них не имеют контактной группы, имеют намного больше ступеней стабилизации и большую точность – от 2% до 5%.

На схеме видно, что отводы трансформатора переключаются симисторами, и выходное напряжение меняется практически мгновенно – не более 0,1 с.

Комфорт использования такого стабилизатора виден сразу – тишина в доме гарантирована.

Наибольший минус данного типа стабилизаторов напряжения – высокая цена.

Дополнительные функции стабилизаторов напряжения

Кроме основной функции стабилизаторов напряжения – стабилизации, есть также такой минимальный набор функций и параметров:

  1. Анализ выходного напряжения. Стабилизатор должен быть оснащен информационным (цифровым или стрелочным) табло которое показывает выходное напряжение. Если на стабилизаторе есть функция анализа входного напряжения, это будет дополнительной полезной информацией.
  2. На больших номиналах ( чаще от 3000 ВА) устанавливается функция «Bypass» – функция в электронном устройстве (обработки сигнала, стабилизации напряжения и др.), позволяющая выполнить коммутацию входного сигнала непосредственно на выход, минуя все функциональные блоки. То есть возможность включать сеть в обход стабилизатора напряжения. Если напряжение нормализовалось или Вам не нужен сейчас стабилизатор – нажали рычажок вверх и напряжение пошло минуя блоков стабилизации.
    Байпас также нужен, если напряжение опустилось ниже предела работы стабилизатора, и он уже не справляется и может перегреться. Тогда напряжение подается напрямую, через байпас.
  3. Виды крепления стабилизаторов напряжения
    Существуют два типа крепления стабилизаторов напряжения – напольное и настенное исполнение.
    Напольное исполнение подразумевает, что стабилизатор находится на полу, полке. Такое расположение не всегда удобно, потому как особенно крупные номиналы не полке не разместишь из-за своего веса, а на полу они занимают достаточно большие площади.
    При навесном исполнении стабилизаторы делают более плоскими, для удобства клиентов. В принципе они могут использоваться и в напольном исполнении, только часто информационная часть табло оказывается в таком случае “вверх ногами” к пользователю.
  4. Во многих моделях на рынке стабилизаторов напряжения используется кнопка задержки. Это сделано, для того, чтобы если пропадет напряжение в сети или временно выйдет за рамки рабочего диапазона, то оборудование до следующего включения придет за это время задержки в положение покоя. Во многих стабилизаторах кнопка задержки предлагается в нескольких диапазонах -6, 90, 120 сек. В более современных моделях задержка уже стала автоматическая и когда она включается, то показывает потребителю на табло время включения стабилизатора в в виде обратного отсчета.
    Задержка включения нужна прежде всего для компрессорного оборудования – холодильников и т.п.

Книга “Всё о стабилизаторах напряжения”

Cтатья написана на основе книги «Всё о стабилизаторах напряжения». Автор, Александр Румянцев, предоставил свою книгу для свободного скачивания. Книгу можно скачать ниже.

Александр Румянцев – технический специалист компании Suntek , более 10 лет работает в сфере электротехники. Вопросы к нему можно задать в конце статьи.

Скачать бесплатно авторскую книгу:

Румянцев А.А. Всё о стабилизаторах напряжения_2-е издание / Теоретические основы однофазного и трехфазного электропитания. Виды стабилизаторов напряжения, подключение и выбор., pdf, 1.09 MB, скачан: 5256 раз./

Скачать инструкции к стабилизаторам напряжения:

1 Паспорт SUNTEK ЭМ электромеханический / Паспорт на электромеханические стабилизаторы Suntek СНЭТ-550, 1000, 1500, 2000, 3000, 5000, 8500, 11000 автотрансформаторного типа., pdf, , скачан: 377 раз./

2 Паспорт на стабилизаторы напряжения SUNTEK ЭТ электронный тип_реле / Руководство по эксплуатации стабилизаторов напряжения электронного типа (на реле) СНЭТ-550, 1000, 1500, 2000, 3000, 5000, 8500, 11000, pdf, , скачан: 1161 раз./

3 паспорт SUNTEK TT тиристорный тип / Руководство к стабилизаторам напряжения тиристорного типа SUNTEK TT (управление на тиристорных ключах), pdf, , скачан: 1023 раз./

На видео из-за стробоскопического эффекта моргает табло стабилизатора (особенность видеосъемки)

Работа электромеханического стабилизатора Suntek

Для изменения входного напряжения используется автотрансформатор, которым можно менять напряжение в необходимых пределах. При этом на выходе стабилизатора напряжение не выходит за рабочий диапазон.

Источник статьи, в комментариях к которой бурно обсуждаются вопросы по стабилизаторам, а Автор отвечает на вопросы публики.

Статьи про стабилизаторы, опубликованные на Дзен-канале СамЭлектрик.ру

Что делать, если статья заинтересовала? Лайк, подписка, комментарий!

Источник

Какие бывают типы стабилизаторов напряжения?

На производстве и в быту широко применяется электрическая энергия. Переменным током питают системы освещение, приводы механизмов электрических приборов, его подают на сетевой разъем электронных устройств. Сбытовые организации не всегда обеспечивают надлежащее качество электрических сетей, что проявляется, в частности, в колебаниях сетевого напряжения. Это неприятное явление характерно для:

  • дачных поселков и небольших населенных пунктов;
  • сетей автономных электростанций, не входящих в единую энергосистему.

Колебания отрицательно влияют на качество функционирования техники, снижают ее надежность. Застраховать себя от этого явления можно применением стабилизатора, который включают между сетью и нагрузкой, рисунок 1.

Рисунок 1. Схема включения стабилизатора

Типы стабилизаторов напряжения по принципу работы

Стабилизацию можно выполняться различными способами. Принципы стабилизации, использованные разработчиком, определяют типы стабилизаторов напряжения.

Релейные

Релейные стабилизаторы, часто называемые ступенчатыми, представляют собой силовой трансформатор с несколькими выходами вторичной обмотки, один из которых принимается за общий. Датчик отслеживает состояние сети, при выходе за пределы разрешенных допусков осуществляет автоматическую регулировку выходного напряжения с помощью переключения реле. При срабатывании отдельных силовых реле происходит переключение обмоток с подключением нагрузки на тот вывод, напряжение на котором минимально отличается от заданного.

Конструктивная простота релейных стабилизаторов, неплохая точность регулирования, невысокая стоимость, высокая надежность обеспечивают им высокую популярность.

  • ступенчатый характер регулирования;
  • заметные искажения формы синусоиды тока нагрузки при высоком входном напряжении из-за магнитного насыщения сердечника;
  • относительно слабая нагрузочная способность рабочих контактов реле;
  • высокий уровень акустического шума.

Электромеханические (сервоприводные)

Электромеханические или сервоприводные стабилизаторы устраняют один из основных недостатков стабилизаторов с механическими реле: обеспечение только ступенчатой регулировки выходного напряжения. Принцип их действия основан на изменении коэффициента трансформации. Оно реализовано с помощью щетки, соединенной с электродом выходных клемм. Щетку перемещает по вторичной обмотке тороидального трансформатора вспомогательный электродвигатель, рисунок 2.

Рисунок 2. Конструктивные особенности сервоприводного регулятора

Для электромеханических стабилизаторов характерны большой диапазон регулировки, небольшие габариты, малая стоимость.

Основные недостатки: низкое быстродействие, хорошо слышимый ночью шум работающего электродвигателя.

Инверторные (бесступенчатые, бестрансформаторные, IGBT, ШИМ)

Инверторные стабилизаторы реализуют двухступенчатую схему получения выходного напряжения. Сначала переменный входной ток преобразуют в постоянный, а затем из него вновь генерируют переменное напряжение. Автоматическое регулирование происходит на этапе формирования постоянного тока, здесь же реализованы функции ступени стабилизации.

Существует несколько вариантов каскадного преобразования, каждому из которых соответствует подкласс инверторных стабилизаторов. Наибольшее распространение получили ШИМ-устройства и стабилизаторы на IGBT-транзисторах.

Сильные стороны этого оборудования:

  • высокая скорость реакции на изменения входного напряжения, точность регулировки выходного;
  • хорошие массогабаритные характеристики (отсутствует силовой трансформатор);
  • простотой получения КПД выше 50 %;
  • возможность плавной регулировки выходного напряжения в сочетании с широкими пределами изменения выходного электрического тока, а также работы на холостом ходе;
  • эффективное подавление скачков напряжения и импульсных помех.

При применении надлежащей элементной базы инверторная техника нормально функционирует при отрицательных температурах.

Главный недостаток: плохая перегрузочная способность, в т.ч. кратковременная (не более 25 – 50% на протяжении 1 – 2 с). Последнее заставляет тщательно контролировать выходную мощность устройства при работе на реактивную нагрузку (электродвигатели различного назначения, вентиляторы и т.д.). Кроме того, следует принимать во внимание сложность электрической схемы, что увеличивает риски отказа, и высокую стоимость из-за необходимости применения силовой полупроводниковой элементной базы.

Феррорезонансные

Феррорезонансный стабилизатор — это устройство трансформаторного типа. Его характерная особенность — применение обмоток трансформатора, одетых на магнитопроводы разного поперечного сечения. Параллельно вторичной обмотке L2 подключен дополнительный конденсатор С, рисунок 3. Его емкость подобрана так, чтобы за счет резонанса обеспечивать постоянное насыщение магнитопровода вторичной обмотки. Отсюда большие изменения входного напряжения не приводят к колебаниям выходного.

Рисунок 3. Схема феррорезонансного стабилизатора

Стабилизатор имеет высокую скорость отработки скачков, обладает повышенной надежностью за счет отсутствия схем переключения, обеспечивает неплохую точность стабилизации.

Отсутствие механически подвижных компонентов позволяет эксплуатировать феррорезонансные стабилизаторы при небольших отрицательных температурах.

Главные недостатки:

  • меньший коэффициент мощности;
  • значительные нелинейные искажения выходного тока, которые могут привести к нарушениям функционирования ряда бытовых приборов, например, к искажениям изображения цветного телевизора и некачественному стиранию старых записей магнитофоном;
  • нестабильность функционирования при вариациях частоты входного напряжения более чем на 0,5 Гц от номинального значения, что нередко встречается при питании населенного пункта от автономной электростанции.

Электронные (симисторные, тиристорные)

Так называемые электронные стабилизаторы структурно повторяют устройства на электромагнитных реле, но для ступенчатых переключений обмоток авторансформатора использованы полупроводниковые изделия. Возможно несколько разновидностей таких электронных схем, каждая из которых осуществляет автоматическое переключение коэффициента трансформации. Серийно выпускаются стабилизаторы, в которых функции ключевых элементов ступенчатого регулирования возложены на симисторы и тиристоры.

Тиристор — это полупроводниковая структура с тремя p-n-переходами, в которой выполнена глубокая положительная обратная связь. Ее наличие обеспечивает высокую скорость переключения при работе в ключевой режиме. Симистор образован двумя тиристорами с объединенными управляющими электродами, включенными встречно-параллельно, рисунок 4. За счет возможности пропускания тока этим компонентом в двух направлениях симисторные стабилизаторы демонстрируют повышенный КПД. Это выгодно отличает их от тиристорных стабилизаторов.

Рис. 4. Принципиальная схема простейшего варианта симисторного регулятора

Общие преимущества:

  • повышенный коэффициент стабилизации;
  • прекрасное подавление перепадов напряжения, импульсных помех;
  • хорошие массогабаритные параметры;
  • высокая надежность при реализации на качественной элементной базе.

Кроме того, по быстродействию электронные стабилизаторы заметно превосходят свои релейные электромеханические аналоги, т.е. хорошо отрабатывают скачки напряжения.

  • плохо адаптированы для работы с реактивной нагрузкой;
  • высокая стоимость;
  • сложность выполнения ремонта.

Виды стабилизаторов напряжения по классу напряжения

Промышленность выпускает широкую гамму стабилизаторов.

По диапазону выходных напряжений электронное оборудование для однофазных сетей рассчитано на 220 – 240 В (популярна также промежуточная градация 230 В), доступны феррорезонансные стабилизаторы на 110 – 120 В.

Бытовое оборудование для трехфазных электросетей обеспечивает выходное напряжение 380 – 415 В вне зависимости от применяемых схемных решений и отдаваемого тока нагрузки.

Техника промышленного назначения может иметь более высокое выходное напряжение: вплоть до 6 – 10 кВ.

Походы к выбору стабилизатора

Перечень параметров, по которым выбирают стабилизаторы, обязательно включает:

  • мощность нагрузки или отдаваемый номинальный ток;
  • выходное напряжение;
  • тип сети (однофазная – трехфазная).

Большую помощь окажет информация о стабильности сети, уровне импульсных помех в ней.

При определении номинальной мощности суммируют мощности всех потребителей защищаемой сети. Для оценки мощности номинальной нагрузки токовую нагрузочную способность входного автомата умножают на 220 В.

При прочих равных условиях выбирают однофазные модели линейных стабилизаторов, учитывают, что модульные конструкции более удобны в обслуживании.

Учитывают эстетические параметры и количество выходных розеток, рисунок 5.

Рис.5. Вариант исполнения однофазного стабилизатора

Окончательный выбор целесообразно выполнять с учетом производителя и места изготовления. Для определения качества техники юго-восточного производства, выпускаемой без контроля со стороны ведущих западных компаний, имеет смысл изучить профильные форумы. Такой подход позволяет сделать адекватный вывод о качестве прибора.

Кроме технических параметров обязательно принимают во внимание доступность сервисного обслуживания.

Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств. Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ.

Промышленность выпускает широкую гамму бытовых стабилизаторов напряжения, что позволяет произвести выбор конкретной модели устройства с учетом конкретной области применения.

Массовый характер рынка стабилизаторов определяет большое количество работающих на нем производящих предприятий, предлагающих свою продукцию через партнерскую сеть. Поэтому перед покупкой следует выполнить тщательный многокритериальный отбор продукта.

Источник

Читайте также:  Подключение дхо через стабилизатор напряжения с пяти контактным реле
Оцените статью
Adblock
detector