Ток короткого замыкания трансформатора 2500 ква

Проект РЗА

Сайт о релейной защите и цифровых технологиях в энергетике

Калькулятор ТКЗ для защиты трансформаторов

Как и обещали ранее выкладываем нашу новую программу — Калькулятор токов короткого замыкания для расчета чувствительности максимальной токовой защиты трансформаторов 6(10)/0,4 кВ. Программа в свободном доступе и находится здесь:

Рассчитать токи КЗ за трансформатором достаточно просто, а вот определить какие токи при этом увидит релейная защита, установленная на стороне высшего напряжения (ВН) уже гораздо сложнее. Для этого мы и создали Калькулятор.

Работает он следующим образом:

  • Задаете среднее напряжение системы (стороны ВН трансформатора);
  • Задаете максимальный и минимальный токи КЗ от системы на стороне ВН;
  • Выбираете конкретный тип трансформатора из справочника, предварительно задав группу соединения обмоток;
  • Если нужно корректируете значение сопротивления дуги на стороне 0,4 кВ;
  • Нажимаете кнопку Расчет и получаете как реальные токи КЗ на стороне 0,4 кВ, так и то, что увидит ваша защита на стороне ВН, с учетом искажения при трансформации;

Значения видимых токов КЗ можно использовать для определения чувствительности релейной защиты со стороны ВН, при КЗ на стороне 0,4 кВ.

Для остальных защит (электромеханические реле, микроэлектронные реле) требуется перевод видимых токов КЗ во вторичные значения, что калькулятор пока не делает. Но мы работаем над этим.

Как вы понимаете это хороший задел для программы по выбору уставок защит в сетях 0,4-10 кВ. Над этим мы тоже работаем)

В общем предлагаю вам самим оценить возможности Калькулятора и, конечно, написать отзывы в комментариях)

Источник

Ток короткого замыкания трансформатора 2500 ква

Особенности расчетов токов КЗ. Для выбора ти­пов и параметров срабатывания устройств защиты трансформаторов необходимо определить максималь­ное и минимальное значение токов при КЗ на выво­дах НН понижающего трансформатора, или, как чаще говорят, при КЗ за трансформатором.

Максимальное значение тока соответствует трехфазному металлическому КЗ за трансформато­ром. Ток трехфазного КЗ рассчитывается при макси­мальном режиме работы питающей энергосистемы (электросети), при котором включено максимально возможное число генераторов, питающих линий и трансформаторов. Эквивалентное электрическое со­противление энергосистемы (электросети) до места подключения рассматриваемого трансформатора при этом режиме имеет минимальное значение, но обозна­чается Z max или X max , что подразумевает максимальный режим работы энергосистемы. При таком режиме ток трехфазного КЗ на выводах ВН трансформатора и мощность КЗ имеют максимальные значения. При значительном числе электродвигателей в прилегаю­щей сети ВН учитывается подпитка места КЗ элек­тродвигателями в течение времени действия защит трансформатора, не имеющих специального замедле­ния, т. е. в течение до 0,1 с. Максимальное значение тока КЗ за трансформатором учитывается для выбора тока срабатывания токовых отсечек, устанавливае­мых на стороне ВН трансформатора (§ 7), а также для выбора аппаратуры и кабелей питаемых элемен­тов стороны НН [6, 7].

Минимальные значения токов при КЗ на сто­роне 0,4 кВ рассчитываются с учетом переходного активного сопротивления (электрической дуги) в ме­сте КЗ до 15 мОм [1]. Для трансформаторов со схе­мой соединения обмоток ∆/ Y практически рассчиты вается минимальное значение тока только при фазном КЗ (считая, что при однофазном КЗ на землю ток в поврежденной фазе имеет такое же значение). Для трансформаторов со схемой соединения обмоток Y / Y рассчитываются токи как при трехфазном, так и при однофазном КЗ, поскольку они значительно от­личаются друг от друга и для их отключения должны устанавливаться разные защиты.

Читайте также:  Трансформатор прогрева бетона тсдз 63 паспорт

Для трансформаторов 10 кВ с низшим напряже­нием выше 1 кВ (3; 6; 10 кВ) со схемами соединения обмоток Y /∆, Y / Y , ∆/∆ минимальное значение тока рассчитывается при двухфазном металлическом КЗ за трансформатором.

Для всех типов понижающих трансформаторов ми­нимальные значения токов КЗ рассчитываются при минимальном режиме работы питающей энергоси­стемы (электросети), при котором включено мини­мальное реально возможное число генераторов, пи­тающих линий и трансформаторов. При этом эквива­лентное электрическое сопротивление энергосистемы (электросети) до места подключения рассматривае­мого трансформатора имеет максимальное значение. Однако это сопротивление принято обозначать Z min или X min , имея в виду минимальный режим работы питающей энергосистемы (электросети). По мини­мальным значениям токов КЗ определяются так назы­ваемые коэффициенты чувствительности для всех ти­пов защит трансформатора от внутренних и внешних КЗ (кроме газовой). Необходимые значения этих коэффициентов указаны в «Правилах» [1] и в соответ­ствующих разделах этой книги.

Расчеты токов при КЗ за понижающими трансфор­маторами небольшой мощности (практически до 1,6 MB -А) производятся с учетом активной состав­ляющей полного сопротивления трансформатора. Токи намагничивания и токи нагрузки трансформато­ров при расчете токов КЗ не учитываются.

При расчетах токов КЗ за трансформаторами .10 (6) кВ считается, что напряжение питающей энер­госистемы на стороне ВН трансформатора остается неизменным в течение всего процесса КЗ. Это допу­щение объясняется тем, что распределительные сети 10 (6) кВ, как правило, электрически удалены от ге­нерирующих источников энергосистемы и КЗ в этих сетях, и тем более за трансформаторами 10 (6) кВ,

мало сказываются на работе электрических генерато­ров. По этой же причине вычисляется только периоди­ческая составляющая тока КЗ, а влияние апериодиче­ской составляющей тока КЗ учитывается при выборе параметров некоторых типов защиты путем введения повышающих коэффициентов.

Вычисление тока трехфазного КЗ по значению напряжения КЗ трансформатора. Наиболее просто максимальное значение тока (в амперах) трехфазного КЗ за трансформатором вычисляется по значению напряжения КЗ трансформатора ( U k ):

где U k напряжение короткого замыкания из пас­порта (паспортной таблички) трансформатора, %; I ном. тр. — номинальный ток трансформатора на сто­роне ВН или НН из паспорта трансформатора, А;

— коэффициент, % ( S ном. тр — номинальная мощность трансформатора из паспорта, MB — A ; SK — мощ­ность трехфазного КЗ питающей энергосистемы в той точке, где подключен трансформатор, т. е. на его вы­водах ВН, задается энергоснабжающей организацией, MB -А); если мощность энергосистемы относительно велика («бесконечна»), то р = 0.

Например, трансформатор ТМ-1 напряжением 10/0,4 кВ, мощностью S ном. тр = 1МВ-А, с номиналь­ными токами сторон ВН и НН, равными 58 и 1445 А соответственно, с напряжением КЗ U k 5,5 % под­ключен к энергосистеме в точке, где мощность КЗ SK = 100 MB -А. Токи при трехфазном КЗ за транс­форматором вычисляются по выражениям (5) и (4): р= 1*100/100=1% ; I к. вн =100*58/(5,5 + 1) = 892 А, отнесенных к напряжению 10 кВ; I к.нн = 100 • 1445/ /(5,5+1)=22230 А или 22,2 кА, отнесенных к напря­жению 0,4 кВ.

Читайте также:  Руководство по эксплуатации трансформатор напряжения нами 110 ухл1

Другой пример: для трансформатора мощностью S ном.тр = 0,25 МВ-А ( U k = 4,5 %), подключенного в удаленной точке сети 10 кВ, где SK = 12,5 МВ-А, рас­считываются токи при трехфазном КЗ на стороне НН по выражениям (5) и (4): р = 0,25*100/12,5 = 2 %; I к.вн = 100 • 14,5/(4,5 + 2) = 223 А и I к.нн = 5538 А или 5,5 кА, отнесенных к напряжениям 10 и 0,4 кВ соответственно. Номинальные токи трансформатора вычислены по выражениям (2) и (3):

При подключении относительно маломощных транс­форматоров (менее 1 MB -А) вблизи мощных район­ных подстанций и подстанций глубокого ввода 110/10 кВ с трансформаторами мощностью более 10 MB -А влияние сопротивления энергосистемы на значение токов КЗ за трансформаторами снижается и им часто пренебрегают, считая мощность энергоси­стемы «бесконечной», а значение р в выражении (4) равным нулю.

Вычисление тока трехфазного КЗ по полному со­противлению трансформатора Z тр. Значения этого со­противления и его составляющих: активной R тр. и ин­дуктивной X тр. необходимо знать для составления так называемой схемы замещения, в которой своими со­противлениями представлены все элементы расчетной схемы питаемой сети НН. Схема замещения дает воз­можность вычислить значения токов КЗ не только на выводах НН трансформатора, но и в любой точке сети НН [6, 7]

Полное сопротивление трансформатора Z тр. (в омах) определяется по выражению

где U к напряжение КЗ, %; S ном.тр. — номинальная мощность трансформатора, MB -А; U ном.тр. — номи­нальное междуфазное напряжение трансформатора на той стороне ВН или НН, к которой приводится его сопротивление, кВ.

Активная составляющая полного сопротивления трансформатора R тр.определяется по значению потерь мощности ∆ P в его обмотках при номинальной на­грузке. В практических расчетах потери мощности в’ обмотках трансформатора принимают равными по­терям короткого замыкания при номинальном токе трансформатора: ∆Р = P k . Активное сопротивление трансформатора (в омах) вычисляется по выражению

где Рк — потери короткого замыкания при номиналь­ном токе трансформатора, Вт; U ном.тр. и S ном.тр. — то же, что в выражении (6), но здесь мощность S ном.тр. выражается в киловольт-амперах (кВ-А). Значения р k приведены в соответствующих стандартах и спра­вочниках.

Индуктивное сопротивление (реактивная состав­ляющая полного сопротивления) трансформатора (в омах) вычисляется по выражению

где Z тр. — модуль полного сопротивления трансформа­тора, вычисленный по выражению (6); R тр. — активная составляющая полного сопротивления трансформа­тора, вычисленная по выражению (7).

Значения сопротивлений стандартных трансфор­маторов общего назначения напряжением 10/0,4 кВ для вычисления токов трехфазного (и двухфазного) КЗ приведены в табл.2.

Как видно из таблицы, сопротивления, отнесенные к стороне НН с U ном.= 0,4 кВ и указанные для удоб­ства в миллиомах, меньше сопротивлений, отнесенных к стороне ВН с U ном. =10 кВ и указанных в омах, в 625 раз, что соответствует выражению

где N тр. — коэффициент трансформации трансформа­тора, равный для рассматриваемых трансформаторов 10/0,4 = 25.

Таблица 2. Сопротивления трансформаторов 10/0,4 кВ

Читайте также:  Характеристики трансформатор jht r800

Источник

Пример расчета тока в месте КЗ с учетом подпитки от электродвигателей напряжением до 1000 В

В данном примере я буду рассматривать приближенный расчет тока в месте КЗ с учетом подпитки от электродвигателей напряжением до 1000 В. Почему я рассматриваю приближенный метод расчета, связано это с тем, что при проектировании очень часто неизвестен состав нагрузки и исходя из этого приходиться рассматривать как обобщенную нагрузку трансформатора, состоящую из электродвигателей и других электроприемников.

Требуется определить ток в месте КЗ с учетом подпитки от электродвигателей для схемы представленной на рис.1.

  • КТП с трансформатором масляным типа ТМГ-1000 мощность 1000 кВА, напряжением 6,3/0,4 кВ, напряжение короткого замыкания Uк = 5,5%, группа соединений обмоток Y/Yн-0.
  • ток короткого замыкания на зажимах ВН трансформатора 6,3/0,4 кВ составляет 20 кА.

Для начала определим максимальный ток металлического трехфазного тока КЗ на шинах 0,4 кВ в точке К2.

1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]:

1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]:

2. Для упрощения расчетов определяем сопротивления трансформатора для группы соединения обмоток Y/Yн-0 по таблице 2.4 [Л1. с. 28], где: rт = 2,0 мОм, хт = 8,5 мОм.

3. Определяем максимальный ток металлического трехфазного к.з. на шинах 0,4 кВ по формуле 2-1 [Л1. с. 14]:

4. Определяем ток подпитки от двигателей по приближенному методу, используя формулу 2-14 [Л1. с. 34]:

  • Е*=0,8 и х*=0,35 – данные значения являются константой и не изменяются;
  • Sн.т = 1000 кВА – номинальная мощность трансформатора;
  • Uн = 400 В – номинальное линейное напряжение трансформатора стороны НН.

5. Определяем суммарный ток в месте подпитки КЗ с учетом подпитки от двигателей по формуле 2-15 [Л1. с. 34]:

6. Определяем ударный ток КЗ по формуле 2-13 [Л1. с. 33]:

  • I (3) к — максимальный ток металлического трехфазного к.з.
  • kу – ударный коэффициент определяется в зависимости от отношения результирующих соотношений цепи КЗ x∑/ r∑ = (хс + хт)/rc = (0,734+8,5)/2=4,6, с учетом этого kу = 1,5.

7. Определяем ударный ток КЗ от двигателей по формуле 2-16 [Л1. с. 34]:

8. Определяем суммарный ударный ток КЗ с учетом подпитки от двигателей по формуле 2-17 [Л1. с. 34]:

Для упрощения расчетов, в таблице 1 приведены значения тока подпитки и ударный ток КЗ от двигателей, исходя из обобщенной нагрузки трансформатора.

Таблица 1 — Значения тока подпитки и ударного тока КЗ от двигателей, исходя из обобщенной нагрузки трансформатора.

Мощность тра-ра, кВА Ном.напряжение, В Ном. ток тра-ра, кА E* х* Ток подпитки от двигателей, кА Ударный ток КЗ от двигателей, кА
100 400 0,145 0,8 0,35 0,332 0,481
160 0,231 0,529 0,74
250 0,361 0,827 1,16
400 0,578 1,32 1,86
630 0,910 2,08 2,93
1000 1,445 3,31 4,65
1600 2,312 5,29 7,44
2500 3,613 8,27 11,63

1. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

Источник

Оцените статью
Adblock
detector