Трансформатор gs 1815b технические характеристики

Содержание
  1. Трансформатор gs 1815b характеристики
  2. Конструкция зарядного устройства от шуруповёрта
  3. Схема, устройство, ремонт
  4. Сменный аккумулятор.
  5. Алгоритм работы схемы довольно прост.
  6. Возможные неполадки зарядного устройства.
  7. Трансформатор gs 1815b характеристики
  8. Схема, устройство, ремонт
  9. Сменный аккумулятор.
  10. Алгоритм работы схемы довольно прост.
  11. Возможные неполадки зарядного устройства.
  12. Стандартная схема зарядного устройства для шуруповёртов на 18 вольт
  13. Стандартная электросхема зарядного устройства
  14. Принципиальная схема
  15. Конструкция аккумуляторного устройства для шуруповёрта
  16. Стандартные и индивидуальные характеристики зарядного устройства фирмы «Интерскол»
  17. Элементы блока питания
  18. Ремонт аккумулятора своими руками
  19. Замена необходимых элементов цепи
  20. Универсальный зарядник своими руками
  21. Трансформатор gs 1815b характеристики
  22. All-Audio.pro
  23. Статьи, Схемы, Справочники
  24. Gs 1815b трансформатор
  25. Перейти к результатам поиска >>>
  26. Конструкция зарядного устройства от шуруповёрта
  27. трансформатор gs-1815b технические характеристики
  28. Ремонт зарядного устройства для шуруповёрта 18 вольт
  29. Продажа бытовой техники в Хмельницкой области — трансформатор
  30. Ремонт зарядки для шуруповерта
  31. Подборка популярных товаров №408 на Petrchaadaev
  32. Продажа бытовой техники в Хмельницкой области — трансформатор
  33. Ремонт зу интерскол своими руками
  34. Electronic Test Equipment Model Numbers
  35. Перечень страниц №1278 на сайте venice4you.ru
  36. Gs 1815b трансформатор характеристики

Трансформатор gs 1815b характеристики

Конструкция зарядного устройства от шуруповёрта

Схема, устройство, ремонт

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол».

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Печатная плата зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки «Пуск» электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

В моей практике был случай, когда стабилитрон пробило, мультиметром он «звонился» как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на «пробой» можно также, как и обычный диод. О проверке диодов я уже рассказывал.

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор «Сеть» (зелёный). Вынимаем АКБ и делаем «контрольный» замер напряжения на её клеммах. АКБ должна быть заряженной.

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.

Трансформатор gs 1815b характеристики

Модератор форума: Igoran, Сергей-78
Форум радиолюбителей » СХЕМЫ » ЗАРЯДНЫЕ УСТРОЙСТВА » Зарядное устройство на шуруповерт трансформатор и диоды (ремонт)

Зарядное устройство на шуруповерт трансформатор и диоды

Сб, 07.05.2016, 23:28 | Сообщение # 1 jura39
Сб, 07.05.2016, 23:39 | Сообщение # 2 PVladimir

обычно там термопредохранитель сгорает

чего гадать сколько витков ,сматывай и считай

Вс, 08.05.2016, 01:31 | Сообщение # 3 jura39
Пн, 09.05.2016, 10:21 | Сообщение # 4 melan

W1 = 50*U1/S, где
W1 — число витков первичной обмотки, шт,
U1 — напряжение первичной обмотки, В,
S — площадь сечения сердечника магнитопровода, см².

Схема, устройство, ремонт

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол».

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Печатная плата зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Читайте также:  Трансформатор типа тг 1020к у2

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки «Пуск» электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

В моей практике был случай, когда стабилитрон пробило, мультиметром он «звонился» как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на «пробой» можно также, как и обычный диод. О проверке диодов я уже рассказывал.

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор «Сеть» (зелёный). Вынимаем АКБ и делаем «контрольный» замер напряжения на её клеммах. АКБ должна быть заряженной.

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.

  • Сообщений: 17
  • Спасибо получено: 0

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

  • Rrenovatio
  • —>
  • Не в сети
  • Живу я здесь
  • Сообщений: 2505
  • Репутация: 23
  • Спасибо получено: 78

он должен подойти с любой почти зарядки.
Мощность его около 25-26 Ватт.
Пониженное переменное напряжение 18V на вторичной обмотке трансформатора!

Вложения:

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

  • Rrenovatio
  • —>
  • Не в сети
  • Живу я здесь
  • Сообщений: 2505
  • Репутация: 23
  • Спасибо получено: 78

Печатная плата зарядного устройства (CDQ-F06K1).

Вложения:

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

  • Сергей федотов
  • Автор темы —>
  • Не в сети
  • Новый участник
  • Сообщений: 17
  • Спасибо получено: 0

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Стандартная схема зарядного устройства для шуруповёртов на 18 вольт

Практически все шуруповёрты работают от аккумуляторов. Средняя ёмкость аккумулятора — 12 мАч. А для того, чтобы он всегда находился в рабочем состоянии, нужна постоянная подзарядка. Для этого необходимо зарядное устройство, характерное для каждого типа аккумуляторов. Однако они сильно различаются по своим характеристикам.

В настоящее время выпускают модели на 12–18 В. Также стоит отметить, что производители используют разные компоненты для зарядных устройств различных моделей. Чтобы разобраться с этим, вы должны ознакомиться со стандартной схемой этих зарядных устройств.

Стандартная электросхема зарядного устройства

Основой стандартной схемы является микросхема трехканального типа. В этом варианте на микросхеме крепятся четыре транзистора, сильно отличающихся по ёмкости и высокочастотные конденсаторы (импульсные или переходные). Для стабилизации тока используются тиристоры или тетроды открытого типа. Проводимость тока регулируется дипольными фильтрами. Эта электрическая схема легко справляется с сетевыми перегрузками.

Принципиальная схема

Предназначение электроинструментов в первую очередь в том, чтобы сделать наш повседневный труд менее утомительным и рутинным. В домашнем быту незаменимым помощником в ремонте или разборке (сборке) мебели и прочих предметов домашнего обихода является шуруповёрт. Автономное питание шуруповёрта делает его более мобильным и удобным в использовании. Зарядное устройство является источником питания для любого аккумуляторного электроинструмента, в том числе и шуруповёрта. Для примера познакомимся с устройством и принципиальной схемой.

Для принципиальных схем зарядных устройств шуруповёртов на 18 В используются транзисторы переходного типа несколько конденсаторов и тетрод с диодным мостом. Частотную стабилизацию осуществляет сеточный триггер. Проводимость тока зарядки на 18 В обычно составляет 5,4 мкА. Иногда, для улучшения проводимости, применяют хроматические резисторы. Ёмкость конденсаторов, в этом случае, не должна быть выше 15 пФ.

Конструкция аккумуляторного устройства для шуруповёрта

«Банки» аккумулятора заключены в корпус, который имеет четыре контакта, включая два силовых плюс и минус для разряда/заряда. Верхний управляющий контакт включён через термистор (термодатчик), который защищает аккумулятор от перегрева во время зарядки. При сильном нагреве он ограничивает или отключает ток заряда. Сервисный контакт включается через резистор на 9 кОм, который выравнивает заряд всех элементов сложных зарядных станций, но они используются обычно для промышленных приборов.

Стандартные и индивидуальные характеристики зарядного устройства фирмы «Интерскол»

  1. Зарядные устройства марки «Интерскол» используют трансиверы с повышенной проводимостью. Их максимальная токовая нагрузка доходит до 6 А, а в новых моделях и выше. В стандартном зарядном устройстве шуруповёрта «Интерскол» используется двухканальная микросхема, конденсаторы на 3 пФ, импульсные транзисторы и тетроды открытого типа. Проводимость тока достигает 6 мкА, при средней энергоёмкости аккумулятора 12 мАч.
  2. Довольно часто российский производитель «Интерскол» использует схему зарядки аккумулятора с транзисторами типа IRLML 2230. В этом случае в зарядных устройствах на 18 В применяют микросхему трёхканального типа и конденсаторы с ёмкостью 2 пФ, которые хорошо переносят сетевые нагрузки. Показатель проводимости при этом достигает 4 мкА. При выборе шуруповёрта нужно учитывать его мощность, которая влияет на его срок эксплуатации. Чем выше показатель мощности, тем дольше проработает инструмент.

Элементы блока питания

Аккумулятор является самой дорогостоящей частью шуруповёрта и составляет примерно 70% от всей стоимости инструмента. При выходе его из строя придётся тратиться на приобретение практически нового шуруповёрта. Но если есть определённые навыки и знания вы можете самостоятельно исправить поломку. Для этого нужны определённые знания об особенностях и строении аккумулятора или зарядного устройства.

Все элементы шуруповёрта, как правило, имеют стандартные характеристики и размеры. Их основным отличием является величина энергоёмкости, которая измеряется в А/ч (ампер/час). Ёмкость указывают на каждом элементе блока питания (их называют «банками»).

Читайте также:  Как узнать проницаемость феррита трансформатора

«Банки» бывают: литий — ионные, никель — кадмиевые и никель — металл — гидридные. Напряжение первого вида — 3,6 В, другие имеют напряжение — 1,2 В.

Неисправность аккумулятора определяется мультиметром. Он определит, какая из «банок» вышла из строя.

Ремонт аккумулятора своими руками

Для ремонта аккумулятора шуруповёрта нужно знать его конструкцию и точно определить место поломки и саму неисправность. Если хотя бы один элемент выйдет из строя, вся цепь потеряет свою работоспособность. Наличие «донора», у которого все элементы в порядке или новые «банки» помогут решить эту проблему.

Мультиметр или лампа на 12 В подскажет, какой именно элемент неисправен. Для этого нужно поставить аккумулятор заряжаться до полной его зарядки. После чего разберите корпус и измерьте напряжение всех элементов цепи. Если напряжение «банок» ниже номинального, то нужно пометить их маркером. Затем соберите аккумулятор и дайте ему поработать до тех пор, пока его мощность заметно упадёт. После этого разберите снова и замерьте напряжение помеченных «банок». Проседание напряжения на них должно быть наиболее заметным. Если разница составляет 0,5 В и выше, а элемент работает, то это говорит о его скором выходе из строя. Такие элементы необходимо заменить.

С помощью лампы на 12 В можно также определить неисправные элементы цепи. Для этого нужно полностью заряженный и разобранный аккумулятор подключить к контактам плюс и минус на лампу 12 В. Нагрузка, созданная лампой, будет разряжать аккумуляторную батарею. После чего замерьте участки цепи и определите неисправные звенья. Ремонт (восстановление или замену) можно произвести двумя способами.

  1. Неисправный элемент обрезается и паяльником припаивается новый. Это касается литий — ионных батарей. Так как восстановить их работу не представляется возможным.
  2. Никель — кадмиевые и никель — металл — гидридные элементы можно восстановить, если присутствует электролит, который потерял объём. Для этого их прошивают напряжением, а также усиленным током, что способствует устранению эффекта памяти и повышает ёмкость элемента. Хотя полностью устранить дефект не получится. Возможно, спустя, некоторое время неисправность вернётся. Гораздо лучшим вариантом будет замена вышедших из строя элементов.

Замена необходимых элементов цепи

Для ремонта аккумулятора для шуруповёрта потребуется запасная аккумуляторная батарея, из которой, можно позаимствовать нужные детали или покупка новых элементов цепи. Новые «банки» должны соответствовать необходимым параметрам. Для их замены потребуется паяльник, олово, канифоль или флюс.

  1. Распаяйте соединения неисправных деталей и установите на их место новые. Не допускайте при этом их перегрева, который может привести к порче аккумулятора. Для этого постарайтесь выполнить быструю пайку без промедлений. В процессе пайки можете охлаждать её прикосновением руки, при отключённом напряжении.
  2. Выполняйте соединения родными пластинами (можно медными), иначе перегрев проводов может привести в работу необходимый термистор, который контролирует нагрев и отключает систему зарядки. При подключении не забывайте соблюдать полярность. Минус предыдущего элемента при последовательном соединении присоединяется к плюсу следующего.
  3. Выровняйте потенциал элементов цепи. Он различается практически на всех «банках». Для этого поставьте аккумулятор заряжаться на всю ночь, а потом на сутки оставьте для остывания. После чего, измерьте напряжение элементов. Показатели должны быть очень близки к номиналу.
  4. Вставьте аккумуляторную батарею в шуруповёрт и дайте на него максимальную нагрузку до полной разрядки. Сделайте два полных разрядных цикла. Результат даст полное представление об эффективности ремонтных работ.

Универсальный зарядник своими руками

Чтобы зарядить аккумуляторное устройство, можно сделать самодельную зарядку, питающуюся от USB-источника. Необходимые компоненты для этого: розетка, USB-зарядка, 10 амперный предохранитель, необходимые разъёмы, краска, изолента и скотч. Для этого нужно:

  1. Разобрать шуруповёрт на детали и отрезать верхний корпус от ручки ножом.
  2. Сделать отверстие для предохранителя сбоку от ручки. Соединить провод с предохранителем и вмонтировать в ручку агрегата.
  3. Зафиксировать предохранитель клеем или термопистолетом. Корпус обмотать скотчем и присоединить конструкцию к разъёму батареи. Провода монтируются вверху шуруповёрта. Инструмент собирается и обматывается изолентой. После чего корпус отшлифовывается, покрывается краской и полученное устройство заряжается.

Как видите, этот процесс не займёт много времени и не будет слишком разорителен для вашего семейного бюджета.

Трансформатор gs 1815b характеристики

Зарядное устройство для шуруповёрта на МС33340.

Автор: Захар aka МР42В
Опубликовано 23.10.2008

Однажды любимый крутитель шурупов METABO попрощался со мной похрустев на последок планетарным редуктором.

Правда до этого момента он безотказно отработал примерно пять лет.
Пришлось идти в магазин и пробовать подобрать новый инструмент для кручения. Глаза естественно разбежались в разные стороны от обилия моделей. Что нужно от шуруповёрта я уже знал , поэтому выбор был остановлен на этой модели Packard Spence (Паккард Спэнс). Всеми параметрами он мне полностью подходил и в руке лежал очень удобно.
Шуроповерт PSCD 14 АD:

Неприятности начались при первой попытке применения шуруповёрта. Добросовестно прозаряжав его три часа (как написано в инструкции) получил время кручения шурупов около пяти минут. Спешить было некуда, поставил снова заряжаться.
По прошествии 16 часов попробовал снова покрутить шурупы, на этот раз время кручения возросло аж до 15 минут. Подумалось что надули в магазине (подсунули брак).
Поставил заряжать в третий раз, применив в этом случае свои познания в области заряда аккумуляторов (аккумулятор должен получить 140 % своей ёмкости). Отложил в сторону штатный зарядник и подключил автомобильный, установил ток заряда 150 ма . Через 16 часов попробовал снова покрутить шурупы, на этот раз шуруповёрт добросовестно отработал более 50 минут.
Вот тут стало понятно что штатный зарядник не работает.
Изнутри он выглядит так (схема неправильная). Эта-же схема плавает в интернете и зовётся «зарядник для Skil». Это не моя ошибка, так собрали на заводе.

Измерил ток заряда, получилось около 50мA. Проверил элементы, все были исправны. Схема оказалась зарядником SKIL, SPARKY и т.д и т.п моделей.

Пробовал спросить на форуме Кота как она (схема) работает но ответа не получил .
Кстати правильно схема выглядит вот так:

Но это выяснилось намного позже.
Процесс поиска приемлемой схемы занял некоторое время. Хотелось настоящий контроллер заряда.
МАХ был отброшен по причине стоимости. ТЕА 1104 по причине дефицитности. Дискретные схемы из-за размеров. Выбор пал на МС33340 от Мотороллы.

Дальше всё обыденно и рутинно. Развёл плату под свой размер.

При первой попытке заряда вылезли некоторые нюансы. Посмотрим на картинку из даташита:

Обратите внимание на формулы внизу рисунка.
Из-за некоторого несоответствия мой контроллер заряжал аккумулятор током 170 ма и только 15 минут. После чего прекращал заряд.
Победить окончательно помогли заграничные камрады. Они придумали калькулятор для расчёта. Нумерация резисторов делителя Vsem соответствует рисунку, на котором изображён 78L12.
В моём случае:

All-Audio.pro

Статьи, Схемы, Справочники

Gs 1815b трансформатор

Sale Results. We send out the sale results notifications in the form of a newsletter within 14 days of the sale taking place. Please follow the link below to register for this service. In addition to sale results, subscribers also receive pre-auction notifications.

Поиск данных по Вашему запросу:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Перейти к результатам поиска >>>

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Автомобильное зарядное из трансформатора ИБП Своими руками

Конструкция зарядного устройства от шуруповёрта

Перестройка блока УКВС. Секреты Старого Радиомеханика. Георгий Верёвкин. Смотреть онлайн Опубликовано: 26 июн Вместо генератора — китайский передатчик. С участием собакена Джека. Подписывайтесь на мой канал и узнаете много новостей и секретов. Ретро Радио Ремонт и Реставрация. Мелодия, ремонт и FM MHz. Океан Свип генератор и настройка ПЧ ЧМ. Убийца паяльных станций. Часть 1.

Селектор каналов-тюнер ТВ. Что внутри? Что полезное можно взять из радиодеталей? Радиоприемник Океан , даем вторую жизнь. Секреты Старого Мастера. Ламповый радиоприёмник Харьков. УКВ 92 мГц. Апгрейд генератора НЧ — минимум затрат, максимум пользы!

Культовый советский усилитель Амфитон АУ. Секреты Старого Радиомастера. Радиоприёмник Урал Авто Невозможное — возможно. Ригонда Моно. Перестройка УКВ на современный диапазон. Я искал схему конвертера фм диапазона история кп кт Океан перестройка на FM диапазон. Ремонт УКУ Мастер-класс от Старого Радиомеханика! Тюнер Орбита, он же- Радиотехника-Т Усилитель БРИГ — из помойки в посудомойку! Сергей Темников 18 часов назад. Георгий, Вам огромное спасибо за видео! Перестроил по вашей методике блок УКВ на Аэлите Понадобился всего один латунный сердечник на гетеродин, катушка была вообще без сердечника.

Сопряглись все контура штатными сердечниками и штатными подстроечниками. Ловит все станции со сложенной антенной! Я в приятном шоке! В связи с этим, есть вопрос. И я вот не пойму, как расширить диапазон до 20 МГц.

Перестроил конденсаторами, нормально работает от 98 до МГц, у нас там почти все FM радиостанции вещают. Но хочется же, чтобы весь диапазон перекрывался, там еще 2 станции работают, может еще появятся.

Есть у Вас такой опыт? Владимир Гусев 1 неделя назад. Нормальное видео. Ретро аппараты. Интересно где можно взять латунные винты для контуров может кто знает. Проблема что то с этим. Vadich Tverdykov 2 недели назад.

Доброго времени,Георгий. Спасибо Вам за то что Вы есть! Ваши уроки очень нужны тем кто умеет держать правильно паяльник,и в трезвом уме. Руководствуясь Вашим уроком я с лёгкостью перестроил два таких блока УКВ.

Это на магнитоле,Аэлита и Рига Работают супер. Аппараты ожили. Так же отдельное спасибо за урок по ремонту магнитофона приставки Электроника стерео. В моём случае была похожая неисправность,что и у Вас. Но неисправность была в блоке управления. Об этом я расскажу в своём видео.

Аппаратуру восстанавливаю исключительно для себя,без коммерции. Есть желание открыть музей. Георгий,Вам огромного Здоровья и Вашим близким. Спасибо за то что Вы делаете. Таких как Вы,единицы. Всегда с огромным удовольствием смотрю Ваши уроки. Удачи Вам Здоровья и Мирного неба. Инн Сергиеныч 1 месяц назад. Дядя Гога, привет с Алтая! Маленький вопрос не по теме: скажите, как у местного динамика с рабочим ходом?

Он больше, чем у 3гд с кобальтовым магнитом? Если слушать громко, он не стучит катушкой об дно магнита? Поделюсь, что за большое время работы у 3гд существует проблема — растрёпывается центрирующая шайба, становится более мягкой, неупругой. От этого ход настолько облегчается, что он не может и 2Вт выдержать, начинает саморазрушать свою обмотку об дно магнита. Это вам не Жора Минский который по рублей берет за типа «свой курс по перенастройке».

Жора Минский — еврей махровый. Эдуард Котов 1 месяц назад. Irvin Maximov 2 месяца назад. Спасибо за информативное видео. У меня сохранился советский УКВ тюнер ласпи Возможно ли его перестроить на FM диапазон с сохранением стерео?

Или может какой то дополнительный блок установить? Arm Strong 2 месяца назад. Сталин 3 месяца назад. Конечно здорово, но этого хлама который так усердно модернезируется уже почти нет ни у кого. Видео просто так на посмотреть от нечего делать. Еа Ас 3 месяца назад.

Jry Sokolov 4 месяца назад. Супер ДЕД! Жаль раньше не видел. Посмотрел некоторые ролики, теперь буду смотреть все. Еще жаль, что мне тоже Евгений Жердев 4 месяца назад. Garik Zueff 4 месяца назад. Наташа Мая 4 месяца назад. Андрей Соловьев 5 месяцев назад. Доброго времени суток! Всегда с удовольствием смотрю Ваши видео.

трансформатор gs-1815b технические характеристики

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле. Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени. Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты см. В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Ремонт зарядного устройства для шуруповёрта 18 вольт

Поисковый аудит и оценка сайта forum. Ниже вы найдете сводку по его индексации поисковыми системами Яндекс и Google, видимости, внутренней структуре, поисковой оптимизации SEO и допущенных ошибках. Сайт forum. Число проиндексированных документов в Яндексе: и Google: Число поддоменов в индексе Яндекса: 0. Критических ошибок в SEO-тегах главной страницы — 3. Дата формирования аудита: Продолжая использовать сайт без изменения настроек, вы соглашаетесь с условиями использования cookie-файлов. Геозависимость, локализация и коммерциализация Группировка запросов по ТОПу Оценка интента запроса Лемматизация и удаление дублей Список запросов из Яндекс.

Продажа бытовой техники в Хмельницкой области — трансформатор

Золотые поставщики — это компании, прошедшие предварительную проверку качества. Проверки на месте были проведены Alibaba. Электрическое оборудование и принадлежности. Сортировать по : Лучшее соответствие.

Ремонт зарядки для шуруповерта

Добрый день всем! Нужна помощь специалистов по электроинструментам. Сломалась зарядка для шуруповерта Интерскол на 18 вольт. По внешнему виду платы понятно, что пробиты диоды. Возможно, что и трансформатор сгорел.

Подборка популярных товаров №408 на Petrchaadaev

Перестройка блока УКВС. Секреты Старого Радиомеханика. Мелодия, ремонт и FM MHz. Георгий Верёвкин. Океан Свип генератор и настройка ПЧ ЧМ. Убийца паяльных станций.

Продажа бытовой техники в Хмельницкой области — трансформатор

Расширенный поиск. Объявления Электроника и быт техника Куплю трансформатор. Показано с 1 по 2 из 2. Тема: трансформатор.

Ремонт зу интерскол своими руками

ВИДЕО ПО ТЕМЕ: трансформатор для зарядки аккумулятора своими руками самый простой

Перестройка блока УКВС. Секреты Старого Радиомеханика. Георгий Верёвкин. Смотреть онлайн Опубликовано: 26 июн Вместо генератора — китайский передатчик. С участием собакена Джека.

Electronic Test Equipment Model Numbers

В первичной обмотке трансформатора обрыв. При разборке обнаружил последовательно с первичной обмоткой включена прямоугольная фиговина с надписью гр 2а. По всей вероятности типа предохранитель. Он то и оказался в обрыве, а сама обмотка 62 ом. Какое мнение выкинуть её или чем заменить? Это термопредохранитель.

Перечень страниц №1278 на сайте venice4you.ru

Русская поддержка phpBB. Конфиденциальность Правила. Поиск Расширенный поиск.

Gs 1815b трансформатор характеристики

Power Supply Unit (PSU) — блок питания


Цоколевка разьема :


Блок схема ATX


Управляющим каскадом БП является источник дежурного напряжения или просто «дежурка». Надо отметить, что существуют несколько основных типов схемных решений этих устройств.

Источник дежурного напряжения.
Напряжение +5VSB, вырабатываемое этим источником, поступает на разъём блока питания для материнской платы (фиолетовый провод, 9-й контакт 20-ти контактного разъема ATX). Используется для питания материнской платы, USB (не всегда), а также для питания всей остальной начинки БП.
Существуют различные способы реализации данного узла БП: на дискретных элементах или интегральных микросхемах.

Вариант 1

Вариант 2

Вариант 3

Вариант 4

Вариант 5

Частота преобразования обычно 70-100кГц.
трансформатор «дежурки» согласно требованиям ATX 2 должен пропускать ток +5VSB не менее 2 ампер.

Standby трансформатор (10W)

Электрическая спецификация:
Электрическая прочность – (1 мин. 60Hz с пинов 1-4 на пины 5-10) – 3 kV .
Индуктивность первичной обмотки – 2.3 uH .
Минимальная резонансная частота – 800 KHz .
Индукция рассеяния первичной обмотки ( пины 6 — 10 закорочены – 130 uHn ( Max .)
Материалы:
[1] Core : EE16
[2] Bobbin : BE-16
[3] Magnet Wire : #35 AWG Heavy Nyleze
[4] Triple Insulated Wire : #26 AWG
[5] Magnet wire #30 AWG heavy Nyleze
[6] Tape : 3M 1298 Polyester Film ( white ) 9.0 mm wide by 2.2 mils thick
[7] Varnish

Каскад «дежурки» можно использовать в малогабаритных радиолюбительских конструкциях, просто выпилив фрагмент платы, где «дежурка» в рабочем состоянии.

Получится вот такой симпатичный малогабаритный « импульсник » (5V 1-2А).

А можно переразвести плату в редакторе схем, внести изменения по регулировке тока и напряжения.

Выходной трансформатор и его каскад также может быть использован вторично.
Основной силовой трансформатор (200-400вт)

Электрическая спецификация:
Электрическая прочность (1 мин. 60Hz с пинов 1-7 на пины 10-14)- 3kV.
Индуктивность первичной обмотки – 3.0 mH .
Минимальная резонансная частота – 0.2 MHz .
Индукция рассеяния первичной обмотки ( пины 1-2 при закороченных пинах 8,9,10-11, 12,3-4,13-14, измеренная при 100kHz – 8 uHn ( Max .)
Материалы :
[1] Core: PC40 EER28L-Z (TOK)
[2] Jinn Bo Bobbins: #JB-0039
[3] Magnet Wire: #26 AWG Heavy Nyleze
[4] Magnet Wire: #30 AWG Heavy Nyleze
[5] Magnet Wire: #20 AWG Heavy Nyleze
[6] Copper ribbon (foil) 0.670″ wide x 0.008″ thick
[7] Tape: 3M 1298 Polyester Film (white) 21.8 mm wide by 2.2 mils thick
[8] Tape: 3M 1298 Polyester Film (white) 15.8 mm wide by 2.2 mils thick
[9] Tape: 3M 44 Margin tape (cream) 3.0 mm wide by 5.5 mils thick

Схема содержит малое количество компонентов и хорошо себя зарекомендовала. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания ATX.

На входе стоит NTC термистор ( Negative Temperature Coefficient ) – полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef . Защищает силовые ключи в момент включения на время зарядки конденсаторов.
Диодный мост на входе для выпрямления сетевого напряжения на ток 10А.
Конденсаторы на входе берутся из расчета 1мкф на 1 Вт. В данном случае конденсаторы «тянут» нагрузку в 200Вт.
Гасящее сопротивление в цепи питания драйвера мощностью 2Вт. Предпочтение отдано отечественным резисторам типа МЛТ-2.
Драйвер IR2151 – управления затворами полевых транзисторов, работающих под напряжением до 600V. Возможная замена на IR2152, IR2153. Если в названии есть индекс «D», (IR2153D), то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct .
Полевые транзисторы используются предпочтительно фирмы IR ( International Rectifier ). Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр.
Справочник по полевым транзисторам фирмы IR на русском языке можно скачать ТУТ .

Внимание!
При монтаже полевых транзисторов на радиатор использовать изоляционные прокладки и шайбы-втулки.

Трансформатор типовой понижающий из блока питания компьютера. Цоколевка как правило, соответствует приведенной на схеме. В схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В).
Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER ( High Efficiency Rectifier – высоко-эффективные выпрямительные). Не путать с диодами Шоттки .
Емкость на выходе – буферная емкость. Не следует злоупотреблять и устанавливать емкость более 10000 мкф .

Рисунок печатной платы в формате LAY.

Практика показала, что в работе полевые транзисторы не сильно нагреваются. Для них достаточно пассивного охлаждения. Полевые транзисторы фирмы IR очень устойчивы к тепловому разрушению и работают вплоть до температуры 150˚ С. Но это не означает, что их следует эксплуатировать в таком критическом режиме.
Для таких случаев потребуется организация активного охлаждения, (установить вентилятор) .

ф ото собранного блока питания.

Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением.
Правильно собранный блок питания не нуждается в настройке и налаживании.
Схема не имеет защиты от К.З. в нагрузке, но в целом практичное и простое схематичное решение для повторения.

Конструкция может быть дополнена схемой регулятора тока.

Работы с такими устройствами требуют знания и соблюдения норм техники безопасности при работе с силовыми цепями, имеющими потенциалы опасные для жизни человека.

Источник

Оцените статью
Adblock
detector