Трансформаторы тока нулевой последовательности обозначение в схемах

Обозначение трансформатора на схеме

В электрических схемах очень часто возникает необходимость в повышении или понижении напряжения. Для выполнения таких преобразований существуют специальные устройства – трансформаторы. В конструкцию прибора входят обмотки в количестве две и более, намотанные на ферромагнитный сердечник. Поэтому обозначение трансформатора на схеме осуществляется, исходя из конкретной модели и конструктивных особенностей.

Основные типы и принцип действия трансформаторов

Существуют различные типы трансформаторов, отображаемые соответственно на электрических схемах. Например, при наличии только одной обмотки, такие устройства относятся к категории автотрансформаторов. Основные конструкции этих приборов, в зависимости от сердечника, бывают стержневые, броневые и тороидальные. Они имеют практически одинаковые технические характеристики и различаются лишь по способу изготовления. Каждое устройство, независимо от типа, состоит из трех основных функциональных частей – магнитопровода, обмоток и системы охлаждения.

Схематическое изображение трансформатора тесно связано с принципом его работы. Все особенности конструкции отражаются в электрической схеме. Очень хорошо просматривается первичная и вторичная обмотка. К первичной обмотке поступает ток от внешнего источника, а с вторичной обмотки снимается уже готовое выпрямленное напряжение. Преобразование тока происходит за счет переменного магнитного поля, возникающего в магнитопроводе.

Схематическое обозначение трансформаторов

Изображение трансформаторов на схемах определяется ГОСТами, разработанными еще при СССР. С незначительными изменениями и дополнениями они продолжают действовать и в настоящее время. В этом документе определены все известные виды трансформаторов, автотрансформаторов и их условные графические изображения, которые могут выполняться ручным способом или с помощью специальных компьютерных программ.

Условные графические изображения трансформаторов и автотрансформаторов могут быть построены тремя основными способами:

  • Упрощенная однолинейная схема (чертеж 1) отображает трансформаторные обмотки в виде двух окружностей. Их выводы показываются одной линией, на которую черточками наносится количество этих выводов.
  • Для автотрансформаторов предусмотрена развернутая дуга (чертеж 2), отображающая сторону более высокого напряжения.
  • Упрощенные многолинейные обозначения обмоток трансформаторов и автотрансформаторов (чертежи 3 и 4) такие же, как и на однолинейных схемах.

Исключения составляют обозначения выводов обмоток, представленные в виде отдельных линий. Кроме того, существуют развернутые обозначения обмоток, изображаемые в виде полуокружностей, соединенных в цепочку (). В данной схеме не устанавливается число полуокружностей и направление выводов обмотки. Начало обмотки обозначается точкой .

В зависимости от конструкции, трансформаторы отображаются на схемах следующим образом: трансформатор без магнитопровода с постоянной связью (рисунок 1) и с переменной связью (рисунок 2). Полярность мгновенных значение напряжения (рисунок 3) представлена на примере трансформатора с двумя обмотками и указателями полярности. Трансформаторы с магнитодиэлектрическими магнитопроводами обозначаются как обычный (рисунок 4) и подстраиваемый (рисунок 5).

Существуют и другие схематические обозначения, отображающие количество фаз, расположение отводов, тип соединения (звезда или треугольник) и другие параметры.

  • Чертеж 1 – ступенчатое регулирование трансформатора.
  • Чертеж 2 – однофазный трансформатор с ферромагнитным сердечником. Между обмотками имеется экран.
  • Чертеж 3 – дифференциальный трансформатор. Местом отвода служит средняя точка одной из обмоток.

  • Чертеж 4 – однофазный трансформатор с тремя обмотками и ферромагнитным сердечником.
  • Чертеж 5 – трехфазный трансформатор с ферромагнитным сердечником. Соединение обмоток выполнено звездой. В одном из вариантов может быть вывод средней нейтральной точки.
  • Чертеж 6 – трехфазное устройство с ферромагнитным магнитопроводом (сердечником). Соединение обмоток выполнено по схеме звезда-треугольник с выводом средней нейтральной точки.

  • Чертеж 7 – трансформатор, рассчитанный на три фазы. Обмотки соединяются комбинированно методом звезды и зигзага с выводом средней точки.
  • Чертеж 8 – тип устройства такой же, как и на предыдущих чертежах. Основное соединение – звезда, при необходимости регулировки под нагрузкой используется треугольник-звезда с выводом нейтральной точки.
Читайте также:  Свистит строчный трансформатор телевизора

  • Чертеж 9 – три фазы, три обмотки, соединенные по схеме звезда-звезда.
  • Чертеж 10 – схема вращающегося трансформатора. Таким способом обозначаются обмотки статора и ротора, соединенные между собой. Схема может меняться, в зависимости от конструкции и назначения машины.
  • Чертеж 11 – типовое устройство, в котором одна обмотка соединена звездой, а две другие обмотки – обратными звездами. Из двух обмоток выведены нейтральные точки, соединенные с уравнительным дросселем.

  • Чертеж 12 – группа трансформаторов, состоящая из трех однофазных устройств с двумя обмотками, соединенными по схеме звезда-треугольник.
  • Чертеж 13 – схема однофазного автотрансформатора с ферромагнитным сердечником.
  • Чертеж 14 – однофазный автотрансформатор с функцией регулировки напряжения.

  • Чертеж 15 – трехфазный автотрансформатор с ферромагнитным сердечником и обмотками, соединенные звездой.
  • Чертеж 16 – автотрансформатор на девять выводов.
  • Чертеж 17 – однофазный автотрансформатор с третичной обмоткой.

Существуют и другие конструкции трансформаторных устройств, которые отображаются на электрических схемах:

  • С одной вторичной обмоткой (рисунок 18).
  • Две вторичные обмотки и один магнитопровод (рисунок 19).
  • Два магнитопровода и две вторичные обмотки. Если магнитопроводов более двух, их можно не изображать (рисунок 20).
  • Шинный трансформатор тока с нулевой последовательностью и катушкой подмагничивания (рисунок 21).

Кроме приведенных примеров, обозначение трансформатора на схеме существует и в других вариантах. Более подробно с ними можно ознакомиться в специальных справочниках по электротехнике.

Схема подключения трансформаторов тока

Обозначение перекидного рубильника на схеме

Источник

Трансформатор тока нулевой последовательности

Иногда в электроустановках может произойти разрушение изоляции, что приводит к утечкам тока. С целью контроля подобных токовых утечек было создано специальное устройство – трансформатор тока нулевой последовательности, нашедший применение также и в устройствах защитного отключения. Данные трансформаторы обнаруживают в нейтрали небаланс или токи нулевой последовательности. Если замыкается одна из фаз, происходит фиксация общих фазных токов, превышающих допустимое значение, после чего вся цепь своевременно отключается.

Что такое ток нулевой последовательности

В электрических сетях с напряжением от 6 до 35 кВ токи нулевой последовательности, как правило, связаны с однофазными замыканиями на землю. Эти токи могут возникать и при нормальных режимах работы, достигая значительной величины. Это приводит к ложным срабатываниям защитных устройств от замыканий на землю.

Трехфазные сети с переменным напряжением могут работать в различных режимах, в том числе и несимметричных. Для расчетов таких режимов используется метод симметричных составляющих, в котором фазные токи и напряжения представлены в виде суммы, включающей в себя прямую, обратную и нулевую последовательность.

В схемах автоматической и релейной защиты чаще всего используется прямая и нулевая последовательность. Прямая последовательность состоит из синусоидальных токов и напряжений, одинаковых по величине во всех трех фазах. Их угловой сдвиг составляет 120 градусов, а максимальные значения достигаются в порядке очереди – А, В и С. Компоненты нулевой последовательности также имеют одинаковую величину в каждой из трех фаз, однако у них отсутствует угловой сдвиг.

Когда установлен симметричный режим работы, в фазных токах и напряжениях должна быть только прямая последовательность. Если же зафиксировано заметное проявление элементов нулевой последовательности, это указывает на возникновение в сети аварийной ситуации, требующей обязательного отключения каких-либо участков.

В электрических сетях напряжением 6-35 киловольт настраивать защиту нулевой последовательности следует с особой осторожностью. Это связано с отсутствием глухозаземленной нейтрали, когда токи нулевой последовательности практически не превышают рабочих токов во всех подключениях. Из-за этого настройка защиты становится очень сложной или вообще невозможной, особенно при наличии в цепях множества линий с однофазными кабелями, неудачно расположенными между собой. Токи нулевой последовательности в нормальном режиме могут появиться в жилах и экранах однофазных кабелей. Частично влияние этих токов компенсируется подключением трансформаторов тока.

Читайте также:  Трансформаторы хасимото в звуке

Принцип работы

Прежде чем рассматривать трансформаторы тока нулевой последовательности, нужно остановится на обычных трансформаторах. Все устройства этого типа разделяются на трансформаторы тока и напряжения. Они применяются для измерений токов и напряжений с большими величинами. На одну из обмоток подается ток или напряжение, которое требуется измерить, а на выходе второй обмотки снимаются уже преобразованные, как правило пониженные значения этих параметров.

Через трансформаторы тока наиболее часто подключаются магнитоэлектрические вольтметры и параллельные цепи, а трансформаторы напряжения соединяются с амперметрами и другими последовательными цепями.

Трансформаторы нулевой последовательности также относятся к токовым измерительным приборам. От других видов трансформаторных устройств они отличаются назначением и принципом работы. Основной функцией данных приборов является регистрация токовых утечек или отсутствия фазы при коротком замыкании в трехфазных кабелях. Когда в жилах таких кабелей возникает асимметрия токов, это приводит к появлению на выходе вторичной обмотки сигнала небаланса. Далее этот сигнал уходит к контрольному устройству, с помощью которого отключается питание поврежденного кабеля. Подключение трансформатора тока нулевой последовательности осуществляется не к каждой фазе. Он соединяется сразу со всеми жилами кабеля.

Таким образом, принцип работы этих устройств основан на выделении сигнала через трансформацию токов нулевой последовательности при однофазных замыканиях на землю. Они применяются в сетях с изолированной нейтралью и схемах релейной защиты. Благодаря нормированному коэффициенту трансформации, который может переключаться во вторичной обмотке, становится возможной эффективная и точная настройка релейной защиты.

Выпуск трансформаторов производителями осуществляется в различных модификациях. Основными техническими характеристиками являются номинальное напряжение и частота, коэффициент трансформации, испытательное одноминутное напряжение, односекундный ток термической стойкости вторичной обмотки. Они имеют различные габариты, обеспечивающие возможность подключения сразу к нескольким одножильным кабелям, сечением до 500 мм2.

Источник

Трансформаторы тока нулевой последовательности обозначение в схемах

1. Для немагнитного магнитопровода указывают химический символ металла, например, магнитопровод медный

2. Магнитопровод ферритовый (изображают толстой линией)

б) ферромагнитный с воздушным зазором

Количество штрихов в обозначении магнитопровода не устанавливается

3. Характер кривой намагничивания отражают при помощи следующих знаков:

а) прямоугольная петля гистерезиса

б) непрямоугольная петля гистерезиса

4. Первичная обмотка трансформатора тока

5. Обмотка запоминающего трансформатора

6. Примеры построения обозначений катушек индуктивности, дросселей, трансформаторов, автотрансформаторов и магнитных усилителей приведены в табл.2.

1. Катушка индуктивности, дроссель без магнитопровода

Обозначение устанавливается для схем энергоснабжения

3. Катушка индуктивности с отводами

Количество полуокружностей в изображении не устанавливается

4. Катушка индуктивности со скользящими контактами (например, двумя)

5. Катушка индуктивности с магнитодиэлектрическим магнитопроводом

6. Катушка индуктивности, подстраиваемая магнитодиэлектрическим магнитопроводом

7. Катушка индуктивности, подстраиваемая немагнитным магнитопроводом, например, медным

8. Дроссель с ферромагнитным магнитопроводом

9. Дроссель коаксиальный с ферромагнитным магнитопроводом

9а. Дроссель трехфазного тока с соединением обмоток в звезду

12. Трансформатор без магнитопровода:

Примечание. Полярности мгновенных значений напряжений могут быть указаны в форме II, например, трансформатор с двумя обмотками с указателем полярности мгновенных значений напряжения

13. Трансформатор с магнитодиэлектрическим магнитопроводом

14. Трансформатор, подстраиваемый общим магнитодиэлектрическим магнитопроводом

15. Трансформатор, каждая из обмоток которого подстраивается магнитодиэлектрическим магнитопроводом:

16. Трансформатор со ступенчатым регулированием

17. Трансформатор однофазный с ферромагнитным магнитопроводом и экраном между обмотками

18. Трансформатор дифференциальный (с отводом от средней точки одной обмотки)

19. Трансформатор однофазный с ферромагнитным магнитопроводом трехобмоточный

20. Трансформатор трехфазный с ферромагнитным магнитопроводом; соединение обмоток звезда-звезда с выведенной нейтральной (средней) точкой

21. Трансформатор трехфазный с ферромагнитным магнитопроводом, соединение обмоток звезда с выведенной нейтральной (средней) точкой — треугольник

22. Трансформатор трехфазный с ферромагнитным магнитопроводом, соединение обмоток звезда-зигзаг с выведенной нейтральной (средней) точкой

23. Трансформатор трехфазный трехобмоточный с ферромагнитным магнитопроводом; соединение обмоток звезда с регулированием под нагрузкой — треугольник — звезда с выведенной нейтральной (средней) точкой

Примечание к пп.21-23. В развернутых обозначениях обмоток трансформаторов (Форма II) допускается наклонное изображение линий связи, например, обмотка трансформатора с соединением обмоток звезда-треугольник

Читайте также:  В телевизоре пищит трансформатор

23а. Трансформатор трехфазный трехобмоточный (фазорегулятор); соединение обмоток звезда — звезда

23б. Трансформатор вращающийся, фазовращатель (обозначение соединения обмоток статора и ротора между собой производится в зависимости от назначения машины)

24. Трансформатор трехфазный с ферромагнитным магнитопроводом; соединение обмоток звезда на одной обмотке — две обратные звезды с выведенными нейтральными (средними) точками на двух обмотках с уравнительным дросселем

24а. Трансформаторная группа из трех однофазных двухобмоточных трансформаторов с соединением обмоток звезда-треугольник

25. Автотрансформатор однофазный с ферромагнитным магнитопроводом

25а. Автотрансформатор однофазный с регулированием напряжения

25б. Регулятор индуктивный однофазный

26. Автотрансформатор трехфазный с ферромагнитным магнитопроводом; соединение обмоток в звезду

26а. Регулятор индуктивный трехфазный

27. Автотрансформатор трехфазный с девятью выводами и ферромагнитным магнитопроводом

28. Автотрансформатор однофазный с третичной обмоткой и ферромагнитным магнитопроводом

29. Автотрансформатор трехфазный с ферромагнитным магнитопроводом, соединением обмоток в звезду с выведенной нейтральной (средней) точкой и третичной обмоткой, соединенной в треугольник

30. Трансформатор тока с одной вторичной обмоткой

31. Трансформатор тока с одним магнитопроводом и двумя вторичными обмотками

32. Трансформатор тока с двумя магнитопроводами и двумя вторичными обмотками

Примечание. При наличии нескольких магнитопроводов допускается магнитопроводы не изображать

33. Трансформатор тока шинный нулевой последовательности с катушкой подмагничивания

34. Трансформаторы тока в каскадном соединении

35. Трансформатор тока быстронасыщающийся

Примечание к пп.30-33 и 35. Допускается не зачернять выходные обозначения, расположенные по концам первичной цепи, например, трансформатор тока быстронасыщающийся

35а. Трансформатор с двумя отводами на вторичной обмотке

36. Трансформатор напряжения измерительный

36а. Трансформатор напряжения измерительный с двумя вторичными обмотками

37. Трансформатор с ферромагнитным магнитопроводом и управляющей (подмагничивающей) обмоткой:

б) трехфазный; соединение обмоток звезда-звезда

37а. Усилитель магнитный. Общее обозначение

38. Усилитель магнитный с двумя рабочими и общей управляющей обмотками

39. Усилитель магнитный с двумя последовательно соединенными рабочими обмотками и двумя встречно включенными секциями управляющей обмотки

40. Усилитель магнитный с параллельным соединением рабочих обмоток и общей управляющей обмоткой

40а. Усилитель магнитный с прямым самовозбуждением и двумя обмотками управления

41. Усилитель магнитный с четырьмя рабочими и тремя управляющими обмотками

42. Усилитель магнитный трехфазный с тремя рабочими и четырьмя управляющими обмотками

43. Усилитель магнитный с двумя рабочими и общей управляющей обмотками и прямоугольной петлей гистерезиса

44. Элемент ферромагнитный, трансформатор запоминающий, элемент памяти.

3. При большом количестве обмоток на магнитопроводе и большом количестве магнитопроводов в схеме допускается использовать следующие обозначения.

В обозначении вертикальная линия означает магнитопровод, горизонтальная — линию электрической связи между обмотками; наклонная черта указывает на наличие обмотки на данном магнитопроводе. Конец наклонной черты, расположенный под линией электрической связи, условно определяет, что соединение произведено с началом обмотки. При прохождении положительного импульса тока слева направо (черт.а) магнитопровод перемагничивается в состояние «1«, соответствующее остаточной намагниченности магнитопровода «плюс Br».

При прохождении положительного импульса тока слева направо (черт.б) магнитопровод перемагничивается в состояние «0«, соответствующее остаточной намагниченности магнитопровода «минус Br», например:

а) трансформатор запоминающий многообмоточный (например, с 10 обмотками, из которых 2, 4, 5 и 9-я перемагничивают магнитопровод в состояние «1«, а 1, 3, 6, 7, 8 и 10-я в состояние «0«)

б) запоминающее устройство (например, на пяти магнитопроводах)

в) матрица накопительная на ферритовых магнитопроводах

4. Допускается около обозначения обмотки указывать количество витков, например, обмотка с двумя витками

45. Трансдуктор, общее обозначение

46. Трансдуктор однофазный параллельный

47. Трансдуктор однофазный последовательный

Примечание к пп.46, 47. Увеличение тока, протекающего по крайним частям управляющих обмоток, обозначенных точками, ведет к увеличению выходной мощности.

48. Трансдуктор трехфазный с тремя обмотками управления, управляющий напряжением трехфазного переменного тока в схеме со средней точкой

Источник

Оцените статью
Adblock
detector