Трансформаторы тока высоковольтные сети для чего

Трансформаторы тока — принцип работы и применение

При эксплуатации энергетических систем часто возникает необходимость преобразования определенных электрических величин в подобные им аналоги с пропорционально измененными значениями. Это позволяет моделировать определенные процессы в электроустановках, безопасно выполнять измерения.

Работа трансформатора тока (ТТ) основана на законе электромагнитной индукции, действующего в электрических и магнитных полях, изменяющихся по форме гармоник переменных синусоидальных величин.

Он преобразует первичную величину вектора тока, протекающего в силовой цепи, во вторичное пониженное значение с соблюдением пропорциональности по модулю и точной передачей угла.

Принцип работы трансформатора тока

Демонстрацию процессов, происходящих при преобразованиях электрической энергии внутри трансформатора, поясняет схема.

Через силовую первичную обмотку с числом витков w1 протекает ток I1, преодолевая ее полное сопротивление Z1. Вокруг этой катушки формируется магнитный поток Ф1, который улавливается магнитопроводом, расположенным перпендикулярно направлению вектора I1. Такая ориентация обеспечивает минимальные потери электрической энергии при ее преобразовании в магнитную.

Пересекая перпендикулярно расположенные витки обмотки w2, поток Ф1 наводит в них электродвижущую силу Е2, под влиянием которой возникает во вторичной обмотке ток I2, преодолевающий полное сопротивление катушки Z2 и подключенной выходной нагрузки Zн. При этом на зажимах вторичной цепи образуется падение напряжения U2.

Величина К1, определяемая отношением векторов I1/I2, называется коэффициентом трансформации . Ее значение задается при проектировании устройств и замеряется в готовых конструкциях. Отличия показателей реальных моделей от расчетных значений оценивается метрологической характеристикой — классом точности трансформатора тока .

В реальной работе значения токов в обмотках не являются постоянными величинами. Поэтому коэффициент трансформации принято обозначать по номинальным значениям. Например, его выражение 1000/5 означает, что при рабочем первичном токе 1 килоампер во вторичных витках будет действовать нагрузка 5 ампер. По этим значениям и рассчитывается длительная эксплуатация этого трансформатора тока.

Магнитный поток Ф2 от вторичного тока I2 уменьшает значение потока Ф1 в магнитопроводе. При этом создаваемый в нем поток трансформатора Фт определяется геометрическим суммированием векторов Ф1 и Ф2.

Учебный плакат «Измерительные траснформаторы»:

Опасные факторы при работе трансформатора тока

Возможность поражения высоковольтным потенциалом при пробое изоляции

Поскольку магнитопровод ТТ выполнен из металла, обладает хорошей проводимостью и соединяет между собой магнитным путем изолированные обмотки (первичную и вторичную), то возникает повышенная опасность получения электротравм персоналом или повреждения оборудования при нарушениях изоляционного слоя.

С целью предотвращения таких ситуаций используется заземление одного из вторичного выводов трансформатора для стекания через него высоковольтного потенциала при авариях.

Эта клемма всегда имеет обозначение на корпусе прибора и указывается на схемах подключения.

Возможность поражения высоковольтным потенциалом при разрыве вторичной цепи

Выводы вторичной обмотки маркируют «И1» и «И2» так, чтобы направление протекающих токов было полярным, совпадало по всем обмоткам. При работе трансформатора они всегда должны быть подключены на нагрузку.

Объясняется это тем, что проходящий по первичной обмотке ток обладает мощностью (S=UI) высокого потенциала, которая трансформируется во вторичную цепь с малыми потерями и при разрыве в ней резко уменьшается составляющая тока до значений утечек через окружающую среду, но при этом значительно возрастает падение напряжения на разорванном участке.

Потенциал на разомкнутых контактах вторичной обмотки при прохождении тока в первичной схеме может достигать нескольких киловольт, что очень опасно.

Поэтому все вторичные цепи трансформаторов тока постоянно должны быть надежно собраны, а на выведенных из работы обмотках или кернах всегда устанавливаются шунтирующие закоротки.

Конструкторские решения, используемые в схемах трансформаторов тока

Любой трансформатор тока, как электротехническое устройство, предназначен для решения определенных задач при эксплуатации электроустановок. Промышленность выпускает их большим ассортиментом. Однако, в некоторых случаях при усовершенствовании конструкций бывает проще использовать готовые модели с отработанными технологиями, чем заново проектировать и изготавливать новые.

Принцип создания одновиткового ТТ (в первичной схеме) является базовым и показан на картинке слева.

Здесь первичная обмотка, покрытая изоляцией, выполнена прямолинейной шиной Л1-Л2, проходящей через магнитопровод трансформатора, а вторичная намотана витками вокруг него и подключена на нагрузку.

Принцип создания многовиткового ТТ с двумя сердечниками, показан справа. Здесь берется два одновитковых трансформатора со своими вторичными цепями и через их магнитопроводы пропускается определенное количество витков силовых обмоток. Таким способом не только усиливается мощность, но дополнительно увеличивается количество выходных подключаемых цепочек.

Три этих принципа могут быть модифицированы различными способами. Например, применение нескольких одинаковых обмоток вокруг одного магнитопровода широко распространено для создания отдельных, независимых друг от друга вторичных цепей, которые работают в автономном режиме. Их принято называть кернами. Таким способом подключают различные по назначению защиты выключателей или линий (трансформаторов) к токовым цепям одного трансформатора тока.

В устройствах энергетического оборудования работают комбинированные трансформаторы тока с мощным магнитопроводом, используемом при аварийных режимах на оборудовании, и обычным, предназначенным для замеров при номинальных параметрах сети. Обмотки, навитые вокруг усиленного железа, используют для работы защитных устройств, а обычные — для измерений тока или мощности/сопротивления.

защитными обмотками, маркируемыми индексом «Р» (релейные);

измерительными, обозначаемыми цифрами метрологического класса точности ТТ, например, «0,5».

Защитные обмотки при нормальном режиме работы трансформатора тока обеспечивают измерение вектора первичного тока с точностью 10%. Их по этой величине так и называют — «десятипроцентными».

Принцип определения точности работы трансформатора позволяет оценить его схема замещения, показанная на картинке. В ней все значения первичных величин условно приведены к действию во вторичных витках.

Схема замещения описывает все процессы, действующие в обмотках с учетом энергии, затрачиваемой на намагничивание сердечника током I.

Построенная на ее основе векторная диаграмма (треугольник СБ0) свидетельствует, что ток I2 отличается от значений I’1 на величину I нам (намагничивания).

Чем выше эти отклонения, тем ниже точность работы трансформатора тока. Чтобы учесть ошибки измерения ТТ введены понятия:

относительной токовой погрешности, выражаемой в процентах;

Читайте также:  Что такое насыщение импульсного трансформатора

угловой погрешности, вычисляемой длиной дуги АБ в радианах.

Абсолютную величину отклонения векторов первичного и вторичного тока определяет отрезок АС.

Общепромышленные конструкции трансформаторов тока выпускаются для работы в классах точности, определяемых характеристиками 0,2; 0,5; 1,0; 3 и 10%.

Практическое применение трансформаторов тока

Разнообразное количество их моделей можно встретить как в маленьких электронных приборах, размещенных в небольшом корпусе, так и в энергетических устройствах, занимающих значительные габариты в несколько метров. Они разделяются по эксплуатационным признакам.

Классификация трансформаторов тока

По назначению их разделяют на:

  • измерительные, осуществляющие передачу токов на приборы измерения;
  • защитные, подключаемые к токовым цепям защит;
  • лабораторные, обладающие высоким классом точности;
  • промежуточные, используемые для повторного преобразования.

При эксплуатации объектов используют ТТ:

наружного монтажа на открытом воздухе;

встроенные в оборудование;

накладные — надеваемые на проходной изолятор;

переносные, позволяющие делать замеры в разных местах.

По величине рабочего напряжения оборудования ТТ бывают:

высоковольтными (более 1000 вольт);

на значения номинального напряжения до 1 киловольта.

Также трансформаторы тока классифицируют по способу изоляционных материалов, количеству ступеней трансформации и другим признакам.

Для работы цепей учета электрической энергии, измерений и защит линий или силовых автотрансформаторов используются выносные измерительные трансформаторы тока.

На фото ниже показано их размещение для каждой фазы линии и монтаж вторичных цепей в клеммном ящике на ОРУ-110 кВ для силового автотрансформатора.

Эти же задачи выполняют трансформаторы тока на ОРУ-330 кВ, но, учитывая сложность более высоковольтного оборудования, они имеют значительно большие габариты.

На энергетическом оборудовании часто применяют встроенные конструкции трансформаторов тока, которые размещают прямо на корпусе силового объекта.

Они имеют вторичные обмотки с выводами, размещаемыми вокруг высоковольтного ввода в герметичном корпусе. Кабели от зажимов ТТ проложены к прикрепленным здесь же клеммным ящикам.

Внутри высоковольтных трансформаторов тока чаще всего в качестве изолятора используется специальное трансформаторное масло. Пример такой конструкции показан на картинке для трансформаторов тока серии ТФЗМ, рассчитанной на работу при 35 кВ.

До 10 кВ включительно используются твердые диэлектрические материалы для изоляции между обмотками при изготовлении корпуса.

Примером может служить трансформатор тока марки ТПЛ-10, используемый в КРУН, ЗРУ и других видах распределительных устройств.

Пример подключения вторичной токовой цепи одного из кернов защит REL 511 для выключателя линии 110 кВ демонстрирует упрощенная схема.

Неисправности трансформатора тока и способы их отыскания

У включенного под нагрузку трансформатора тока может нарушиться электрическое сопротивление изоляции обмоток или их проводимость под действием теплового перегрева, случайных механических воздействий либо из-за некачественного монтажа.

В действующем оборудовании чаще всего повреждаются изоляция, что приводит к межвитковым замыканиям обмоток (снижению передаваемой мощности) или возникновению токов утечек через случайно созданные цепи вплоть до КЗ.

С целью выявления мест некачественного монтажа силовой схемы периодически проводятся осмотры работающей схемы тепловизорами. На их основе своевременно устраняются дефекты нарушенных контактов, уменьшается перегрев оборудования.

Проверку отсутствия межвитковых замыканий осуществляют специалисты лабораторий РЗА:

снятием вольтамперной характеристики;

прогрузкой трансформатора от постороннего источника;

замерами основных параметров в рабочей схеме.

Они же анализируют величину коэффициента трансформации.

При всех работах оценивается соотношение между векторами первичных и вторичных токов по величине. Отклонения их по углу не осуществляется из-за отсутствия высокоточных фазоизмерительных устройств, которые применяются при поверках трансформаторов тока в метрологических лабораториях.

Высоковольтные испытания диэлектрических свойств возложены на специалистов лаборатории службы изоляции.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Назначение трансформатора тока и принцип его работы

Своевременная поверка и замена трансформатора тока, обязательные, так как от устройства зависит точность измерений при обслуживании особо мощных электроустановок, безопасность функционирования и взаимодействие с ними. Устройство понижает мощность до нужного уровня, давая возможность подключать измерительные приборы. Выбор трансформатора тока осуществляется под задачи (защита или измерение), конкретную мощность и особенности оборудования.

Понятие трансформатор тока, назначение

Под трансформаторами тока (ТТ) подразумевают аппараты статичного типа с электромагнитным принципом с обмотками (две или больше) на металлическом стержне (магнитопроводе) с выводами для подключения в сеть и к измерительным приборам.

  • подсоединения измерителей, РЗиА (защитных реле), которые не выдержали бы первоначальной нагрузки. Происходит изолирование подключаемого и работающего узла от чрезмерных мощностей обслуживаемого оснащения;
  • расширение пределов измерений;
  • понижения тока по мощности и создание защиты;
  • контроль в цепях с высокими величинами, например, в сварочном аппарате, где ток достигает 150–250 А;
  • в любых других случаях, когда надо понизить ток.

ТТ работают с переменными, в крайнем случае с пульсирующими напряжением — если подключить к постоянному, то на выходе потенциал будет нулевым. Иногда встречается название «трансформатор постоянного тока», это значит, что в нем используются специальные выпрямители.

Где используются

ТТ широко применяются при транспортировке электроэнергии на большие расстояния, для распределения между приемниками. Они отличаются тем, что предназначены для выпрямительных, стабилизирующих, сигнальных, усиливающих, контрольных узлов, на станциях и объектах, производящих электричество. Именно поэтому к их точности и подключению требования чрезвычайно высокие — даже ничтожные отклонения значимые.

Где чаще всего и зачем применяют:

  • в промышленной, производственной энергетике, в релейных узлах подстанций, распределительных конструкциях, мощных электроустановках;
  • для замеров и в приборах, осуществляющих данную функцию. Ставят в узлы учета (коммерческого, бытового);
  • для контроля высоких величин, при подсоединении учетных устройств, электросчетчиков.

В чем разница между трансформаторами тока и напряжения

Если рассматривать вопрос, чем отличается трансформатор тока от трансформатора напряжения, то это алгоритм действия, назначение и компоновка, но иногда внешне приборы могут быть схожими.

Трансформаторы
Тока (ТТ) Напряжения (ТН, силовые)
Принцип действия трансформатора тока необходимо отличать: у ТТ нет узкого диапазона номинала вторички и ее ток зависит от такового (измеряемого) первичных витков, поэтому первая всегда замыкается при подсоединенной нагрузке. Монтаж трансформаторов напряжения отличается и по этому пункту.

Первичка может быть с одним витком через окно магнитопровода. На другой катушке строго определенный номинал.

Основное отличие: функционирует как источник тока со значением защищаемого участка. Данная величина почти независима от нагрузок на вторичке.

Как работает трансформатор напряжения: при переходе между катушками (всегда много витков) меняются характеристики именно питания под параметры потребителя. То есть изоляция и защита тут на втором месте, имеют другую природу. Нагрузка может варьироваться в пределах возможностей изделия.
Цель — изолирование измерителей от высоких мощностей, для контроля, измерений электросетей. Трансформаторы напряжения назначение режим работы и принцип действия имеют иные, чем ТТ. Цель — преобразование мощности для питания нагрузок разного номинала. Напряжение, продуцируемое электростанциями чрезвычайно высокое. Для подвода энергии применяют понижающие модели, а при передаче на большие расстояния (когда возможны потери) — повышающие.
На ЭУ, станциях, где подведена чрезвычайно мощная сеть до такой степени, что требуется дополнительная изоляция даже для замеров. Для чего нужен трансформатор напряжения: эксплуатация бытовых и подобных электроустройств. Для «подгонки» под приемники энергии, благодаря чему возможно везде пользоваться универсальной сетью. Напряжение изменяется под потребности потребителя, становится подходящим для любой техники.
Встроен почти в каждый бытовой прибор, есть в общедомовых сетях.

Наличие в ЭУ слабо и среднемощных ТТ обезопасит работы — элемент разделяет цепи высоких/низких мощностей, упрощает измерители, реле.

Устройства, например, способны осуществлять понижение с тысяч ампер до 5 А, 1 А.

Разновидности

Есть много видов ТТ, но в наиболее общем виде выбор трансформаторов тока учитывает, что изделия подразделяются на измерительные (ТТИ) и для защиты.

Фактор разделения Виды
Назначение
  • защита или контроль (измерение);
  • промежуточные — для замеров, выравнивания токов в АВДТ;
  • лабораторные.
Конструкция В обмоточных первичка включена последовательно в измеряемый проводник. В тороидальных вместо нее — линия сети (в отверстии ТТ), а в стержневых в ее роли — кабель цепи, что эквивалентно 1 витку.
Монтаж
  • для размещения снаружи (в ОРУ), или внутри (в ЗРУ);
  • встраиваемые (в ЭУ, измерителях, коммутационных агрегатах);
  • накладные;
  • для переноски (для лабораторий, тестирования).
Количество витков
  • с множеством витков (петлеобразные, восьмеркой);
  • одновитковые.
Изоляция
  • сухая: (фарфор, эпоксид, бэкелит);
  • промасленное покрытие;
  • компаунд.
Ступени Одна или больше (каскадные)
Под какой номинал До 1 кВ и выше (например, для тока 10 кВ)

Токовый трансформатор может выполняться с возможностью открывать его, устанавливать и запирать, без отключения, в онлайн режиме.

Защитные ТТ

Трансформаторы защитные обычно релейного типа, «следят», чтобы проводящий манипуляции, влезающий в электросети электростанции, не получил смертельный удар. Внутри электросистем, создающих, транспортирующих, распределяющих энергию, для корректной работы присутствуют опасные значения. Но любое оборудование требует проверки, починки, обслуживания, поэтому оставляют «окно» безопасности в виде ТТ для специалистов-ремонтников.

Измерительные ТТ

Задача измерительного трансформатора тока ТТИ — преобразовывать величины, создавая возможность подсоединять вольтметр, амперметр, другой измеритель, не боясь, что он перегорит от чрезмерной нагрузки. При этом получают максимально точные, достоверные данные измерений. Другими словами, ТТ изолирует подключаемый девайс, не только для замеров, но и любой другой по потребности, от высоких мощностей.

Устройство и принцип работы

В основе работы — электромагнитная индукция. Аппарат разделяет высоковольтные токонесущие части и трансформирует величины энергии до безопасных или требуемых.

Суть работы ТТ. Если через первичку идет переменный определенной силы ток, то вторичная катушка, будучи с постоянной активной нагрузкой, например (резистор или обслуживаемая ЭУ), создает на них падение напряжения пропорционально току первички (зависимо от коэффициента трансформации) и сопротивлению. Напряжение уменьшается в максимально возможном диапазоне, возможности понижения почти бесконечные.

Устройство, схема трансформатора тока:

  • две (реже больше) обмотки на магнитопроводе из электростали:
  • первичная (включаемая в сеть). Это любая токопроводящая жила;
  • вторичная (от нее энергия подается к приемнику). Одиночная или групповая снабжается несколькими выводами для защитных цепей, приборов измерения и контроля;
  • выводы, клеммы.

Первичные витки подсоединяются последовательным методом, поэтому там полная нагрузка, вторичная же замыкается на нее (реле защиты, счетчики), пропуская ток пропорциональный величине на первой. Сопротивление измерителей малое и считается, что все трансформаторы тока функционируют в состоянии КЗ.

Есть несколько вариантов вторичных обмоток, обычно они создаются для подсоединения защитных приспособлений и для приборов контрольных, учетных. К катушкам обязательно должна подключаться нагрузка со строго регламентированным сопротивлением — даже ничтожные отклонения приводит к критическим погрешностям замеров, не селективности РЗ.

Работа ТТ поэтапно на примере схемы

Трансформатор тока как устроен, принцип работы поэтапно:

  1. Через первичную цепь (кол. витков W1) идет ток I1, преодолевается ее полное сопротивление Z1.
  2. Вокруг катушки образуется магнитное направленное поле Ф1, улавливаемое стержнем стоящим перпендикулярно к вектору (I1) данной величины. Ориентация деталей делает потери энергии почти нулевыми.
  3. Пересекающий перпендикулярные по отношению к нему витки W2 поток Ф1 создает там движущую силу Е2.
  4. Из-за последней во вторичной катушке (Z2) появляется ток I2, преодолевающий сопротивление (ее и подсоединенной нагрузки Zн).
  5. На клеммах витков вторичной катушки возникает понижение напряжения U2. Одно магнитное поле Ф2 от вторичных витков I2 понижает другое Ф1 в стержне. Возникший в нем трансформаторный поток Фт определяют суммой векторов (Ф1 и 2).

Принцип работы, отличия трансформатора напряжения основываются на электромагнитных явлениях, как и в токовых. Но разница в количестве витков обмоток и назначении. Важно учесть цели, на которые конструкция рассчитана, трансформаторы напряжения обслуживают потребителей, поэтому «заточены» на трансформацию питания для электроприборов, ТТ — для защитных и измерительных устройств, а также они используются при осуществлении контроля и работают в режиме КЗ.

Важность коэффициента трансформации, класса точности, погрешности

Коэффициент трансформации (КТ) — определяет пропорциональность преобразования, задается при проектировании ТТ, при выпуске обязательно проверяется. На схеме это К1, определяемый соотношением l1/l2 (двумя векторами).

Эффективность коэффициентов собранных изделий отображает класс точности. При реальном функционировании токовые величины не постоянные, поэтому коэффициент обозначают номинальным. Пример: 1000/5 — при 1 кА рабочего тока (первичного) во вторичной цепи действует нагрузка 5 А. Именно по описанным значениям и проводится расчет продолжительность эксплуатации этого трансформаторного тока.

Погрешность ТТ влияет на класс его точности и определяется сечением, уровнем проницаемости материала магнитопровода, величинами магнитного пути.

Возрастание сопротивления нагрузки во вторичной цепи, превышающее возможности ТТ (при этом там генерируется повышенное напряжение), провоцирует пробой изоляции — трансформатор выходит из строя, перегорает. Поэтому важно правильно подбирать данный параметр. Предельное сопротивление есть в справочных материалах.

Монтаж, подключение, опасные факторы

При пробое изоляции обмоток возникает возможность поражения током, но риск предотвращается заземлением вывода (обозначается на корпусе) вторички.

На выводы вторичной катушки И1 и И2 токи полярные, они обязательно постоянно подсоединены на нагрузку. Идущая по первичной цепи энергия со значительным потенциалом (S=UI). В другой происходит трансформация, и при обрыве в ней там падает напряжение. Потенциал разомкнутых концов при протекании энергии большой, что представляет значительную опасность.

По описанным выше причинам все вторичные цепи ТТ собирают особо тщательно и надежно, на них и кернах, выведенных из функционирования, всегда ставят шунтирующие закоротки.

Как подключается ТТ

Есть несколько схем для изделий защитного типа. Рассмотрим подключение ТТ на трехфазное напряжение.

  • самая распространенная, защита одно- и многофазных систем от КЗ;
  • три ТТ соединяются в звезду.

Если ток ниже настроек на реле КА1–КА3, то это нормальная ситуация, защита не активируется. Ток на К0 — это сумма всех 3 фаз. При возрастании величин в одной из них растет ток и в ТТ. Произойдет сработка реле при КЗ и при превышении нагрузок.

  • защита от межфазных замыканий для создания цепей с нейтралью с заземлением;
  • для маломощных приемников с другими вариантами защиты.

Схема «треугольник и звезда» — для дифференциальной защиты.

Схема без обесточивания при КЗ на землю используется, но редко по этой же причине. Для защиты от замыканий между фазами и всплесков в одной из них.

ТТИ подсоединяются простым последовательным подключением первичных витков изделия.

Монтаж

Монтаж трансформаторов тока:

  1. Ревизия устройства, проверка изоляции (должно быть выше 1 кОм на 1 В);
  2. Отключают ЭУ;
  3. Убедится в обесточивании, зафиксировать заземления.
  4. Разметка, установка креплений. Запрещено размещать трансформатор вплотную к ЭУ (минимальный зазор — 10 см).
  5. Выставляются таблички, ограждения.
  6. Первичные витки подсоединяются последовательно, но с нагрузкой на вторичных. Если нет возможности подключить измеритель, то ее контакты замыкают, чтобы не было высоких мощностей на ней, которые приведут его повреждению.

ТТ не допускает холостого функционирования, его режим близок к КЗ: вторичные витки при подключении прибора к измеряемому току обязательно замыкаются. Иначе происходит перегревание, повреждающее изоляцию. Перед отсоединением измерителей сначала закорачивают катушки. У некоторых моделей для этого есть узлы клеммы, перемычки.

Расчет

Расчет трансформатора тока можно провести по онлайн-калькуляторам, подобрать по номиналу (например, для 10 кВ). Но это слишком упрощенные инструменты. Исчисления и параметры для выбора — чрезвычайно обширная тема, поэтому опишем основы.

Точность чрезвычайно важная, поэтому потребуются тщательные исчисления специалистами. Необходимо знать множество специфических нюансов, например:

  • при разных схемах подсоединения, видах КЗ, есть разные формулы определения сопротивления;
  • проверяют первичный ток на термо- и электродинамическую стойкость;
  • есть свои нюансы для ТТ, для релейной защиты и для учетных целей, измерений.

Правила, как выбрать трансформатор тока в общих чертах:

  • номинальное рабочее напряжение ТТ должно превышать или сравниваться с номиналом ЭУ (стандартные значения 0.66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750 кВ). Если обслуживаемое оборудование имеет 10 кВ, то изделие должно быть рассчитано на этот показатель;
  • первичный ток ТТ — больше номинального тока у ЭУ, но учитывая перегрузочную способность;
  • оценивают ТТ по номинальной мощности вторичной нагрузки, которая должны превышать расчетное ее значение. (Sном>=Sнагр);
  • оценивают размеры и расположение для установки, номинальные нагрузки (есть таблица), наработка до отказа, срок службы, класс точности.

Проверка после расчета

  • после расчета ТТ проверяют по загрузке при макс. и мин. значениях, протекающих через него нагрузок;
  • по п. 1.5. 17 ПУЭ при макс. подключенной нагрузке ток во вторичной катушке — не менее 40 % номинала счетчика, при мин. — не менее 5 %;
  • макс. загрузка должна быть от 40 %, а мин. — от 5 %, и в любом случае она не должна превышать 100 %, иначе возникнет перегрузка трансформатора;
  • если рассчитанные величины макс./мин. загрузок меньше 40 % и 5 % соответственно, то надо подбирать изделие с меньшим номиналом, а если этого нельзя сделать по параметрам макс. нагрузки, надо предусмотреть монтаж двух счетчиков — для макс. и мин. нагрузки.

Самостоятельная сборка ТТ

Создание ТТ своими руками — отдельная тема, так как для процедуры потребуются широкое описание расчетов с формулами, но упрощенно процесс выглядит как наматывание рассчитанного количества витков медной проволоки на стержень (железо, сталь).

В основе лежит известный принцип. Токи на первичке и вторичке обозначают соотношением. Например, 100/5: величина на первой в 20 раз превышает таковую на второй, то есть, когда на ней есть 100 А, то на другой будет 5 А. Изделие 500/5 понижает 500 А до 5 А (на вторичных витках). Указанные величины зависят от соотношения количества витков.

Поверка

Поверка измерительных трансформаторов, трансформаторов напряжения, поверки трансформаторов тока всех возможных видов не имеют одного фиксированного срока. Разные типы и модели имеют свою периодичность поверочных мер.

Межповерочный интервал находится в диапазоне 4–16 лет. Например (модель — срок в годах):

Узнать сроки можно из таких источников:

  • паспорт изделия. Самый простой способ, так как данная информация в технической документации на такой товар обязательная. Если оригинальные бумаги утеряны, то можно направить запрос производителю. Примерные данные можно узнать из интернета — в сети есть сканы и образцы паспортов;
  • у завода-изготовителя;
  • в сертификате предыдущей процедуры;
  • ГОСТ 7746-2015.

Поверки нужны для допуска к эксплуатации, мероприятие осуществляют специальные аккредитованные и лицензированные учреждения, лаборатории, структуры энергетических компаний. Исполнитель должен иметь соответствующее свидетельство. После мероприятия его проведение и состояние изделия подтверждается поверительным клеймом, пломбой, отметкой в паспорте, протоколом.

Основная цель поверки — определить погрешность. По непригодным изделиям гасят клеймо, вносят запись в паспорт, выдают извещение о непригодности, аннулируют предыдущие свидетельства.

При тестировании используют несколько методик и приборов (мегаомметры, вольтметры, амперметры, приборы сравнения токов). Подробно процедура прописана в ГОСТе 8.217-2003.

Где купить

Чтобы максимально быстро приобрести трансформатор, можно посетить ближайший специализированный магазин. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:

Видео по теме

Источник

Оцените статью
Adblock
detector