Угол управления выпрямленного напряжения

Принцип регулирования выпрямленного напряжения в управляемых выпрямителях.

В управляемых выпрямителях процесс выпрямления совмещен с регулированием напряжения. В них в качестве основного элемента применяют управляемые вентили – тиристоры.

Условия открытия тиристора :

Тиристор закрывается при подаче обратного напряжения или уменьшении тока через тиристор величины, близкой к нулю. После открытия тиристора управляющий электрод теряет свои функции.

Если к тиристору прикладывается напряжение от вторичной обмотки (положительный полупериод), то тиристор будет закрыт до тех пор, пока не будет подан импульс на управляющий электрод. Как только это произойдёт, тиристор открывается и работает, как обыкновенный вентиль.

^ Рисунок 1. Принцип горизонтального регулирования.

Время от начала полупериода до открывания тиристора называется углом регулирования α. Если α = 0, то работа выпрямителя аналогична работе неуправляемого выпрямителя. Чем позже от начала полупериода будет появляться управляемый импульс, тем позже откроется тиристор , тем больше угол регулирования α, тем меньше будет площадь импульса выпрямленного напряжения, тем меньше будет среднее значение выпрямленного напряжения.

Среднее значение выпрямленного напряжения может быть определено по формуле для любого угла регулирования: Uo = Uoα=0 • (1 + cosα) / 2

Таким образом, изменяя время появления управляющего импульса, изменяем угол регулирования, а следовательно, и среднее значение выпрямленного напряжения.

^ 2. Методы управления тиристорами (Самостоятельная работа):

Горизонтальный метод управления;

Вертикальный метод управления;

Существует два способа изменения угла регулирования:

Горизонтальный метод управления называется так потому, что с помощью фазосдвигающих устройств смещаются управляющие импульсы по горизонтали (по оси времени).

Вертикальный метод управления. При этом методе управления, управляющий импульс появляется тогда, когда линейное возрастающее напряжение (пилообразное) становится равным какому- то постоянному напряжению (которое можно изменить).

Допустим, что постоянное напряжение Un, тогда в момент времени 1 напряжение пилообразное станет равным Un1:

Рисунок 2. Принцип вертикального регулирования.

В этот момент будет сформирован управляющий импульс 1. Угол регулирования равен α1. Если Un увеличить до значения Un2, то пилообразное напряжение позже достигает этого значения, следовательно, и позже появится управляющий импульс (в момент 2).. Угол регулирования в этом случае увеличится.

Второй случай более точный (более стабильный α), но и более сложный. Преимуществом регулирования напряжения является исключительно малые потери, а недостатком — повышение пульсации, в особенности при больших углах регулирования

^ Принцип работы схемы однофазного управляемого выпрямителя с нулевым выводом.

Широкое применение для регулирования напряжения на нагрузке получил фазовый способ, основанный на управлении во времени моментом отпирания диодов выпрямителя. Он базируется на использовании в схеме выпрямителя управляемых диодов — тиристоров, в связи с чем выпрямитель называется управляемым.

Рассмотрим принцип работы схемы однофазного управляемого выпрямителя с нулевым выводом (рис4), работающего на активную нагрузку.

Пусть на входе выпрямителя действует положительная полуволна напряжения сети U1 чему соответствуют полярности напряжений на обмотках трансформатора, указанные на рис. 4 без скобок. На интервале О-vd тиристоры VS1, VS2 закрыты, напряжение на выходе выпрямителя ud= 0. К тиристорам VS1, VS2 прикладывается суммарное напряжение двух вторичных обмоток трансформатора U2-1 + U2-2. На тиристоре VS1 действует напряжение в прямом направлении, а на тиристоре VS2 в обратном.

Если сопротивления непроводящих тиристоров при прямом и обратном напряжениях считать одинаковыми, то на интервале 0 – v1 напряжение на тиристорах (с учетом соответствующей полярности) будет определятся величиной (u2-1-u2-2)/2 = u2.

В момент времени v1 определяемый углом α от системы управления СУ выпрямителя поступает импульс на управляющий электрод тиристора VS1. В результате отпирания тиристор VS1 подключает нагрузку rh на напряжение U2-1 — т вторичной обмотки трансформатора. На нагрузке в интервале формируется напряжение Ud), предоставляющее собой участок кривой напряжения U2-1 = u2 Через нагрузку и тиристор VS1 протекает ток При переходе напряжения питания через нуль(\/2-П), ток тиристора VS1 становится равным нулю и тиристор закрывается.

Читайте также:  Максимальная мощность для присоединения квт для дома при напряжении

В интервале V2 — П полярность напряжения питания изменяется на противоположную. В этом интервале оба тиристора выпрямителя закрыты. К тиристору VS1 прикладывается обратное напряжение, а к тиристору VS2—прямое напряжение, равное u2.

По окончании указанного интервала подается отпирающий импульс на тиристор VS2. Отпирание этого тиристора вызывают приложение к нагрузке напряжения ud=u2-2=u2 той же формы, что и на интервале проводимости тиристора VS1.

Через нагрузку и тиристор протекает ток .На интервале 2П — V2 проводимости тиристора VS2 напряжения двух вторичных обмоток трансформатора подключаются к тиристору VS2, вследствие чего с момента отпирания тиристора VS2 на тиристоре VS1 действует обратное напряжение, равное 2u2.

^ Рисунок 5. Временные диаграммы выпрямленного напряжения

Регулеровачная характеристика управляемого выпрямителя.

Максимальному обратному напряжению соответствует значение, где U2 — действующее значение вторичного напряжения трансформаторов.

В последующем процессы в схеме следуют аналогично рассмотренным.

Как указывалось, одной из важнейших особенностей управляемого выпрямителя является его способность регулировать среднее значение выпрямленного напряжения Ud при изменении угла α. При α = 0 кривая выходного напряжения Ud соответствует случаю неуправляемого выпрямителя и напряжения максимально. Углу управления α – П (180 эл. град. ) отвечают Ud = 0 и Ud =0. Иными словами, управляемый выпрямитель при изменении угла α, от 0 до 180 эл. град. осуществляет регулирование напряжения Ud в пределах от максимального значения, равного 09 U2 do 0. Вид кривых Ud при различных значениях угла α показан на рис. 5а — г.

Зависимость напряжения Ud от угла α называется регулировочной характеристикой управляемого выпрямителя и приведена на рис. 6.

Какой метод управления тиристорами является наиболее эффективным?

Какие условия необходимы, чтобы тиристор был открыт?

При каком условии закрывается тиристор?

Чем позже от начала полупериода будет появляться управляющий импульс, тем?

В каком случае работа управляющего выпрямителя аналогична работе неуправляемого выпрямителя?

При каком значении угла регулирования выпрямленное напряжение на выходе управляемого выпрямителя минимально?

Что показывает регулировочная характеристика управляемого выпрямителя?

Дата добавления: 2015-12-16 ; просмотров: 7466 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

28. Угол управления выпрямителем, угол управления инвертором, угол коммутации.

Угол управления преобразователем ()— это угол, выраженный в электрических градусах, отсчитываемый от точки естественной коммутации двух чередующихся фаз до момента включения тиристора последующей фазы.

угол коммутации — угол, в течении которого вентили участвующие в коммутации одновременно проводят ток.

Диаграмма напряжения с указанием углов управления и коммутации для однофазной мостовой и трехфазной нулевой схем.

29. Свойства тп при их работе в режиме непрерывного и прерывистого тока на активно-индуктивную нагрузку с противоЭдс. Внешние характеристики в этих режимах.

Диаграмма напряжения ТП и тока в режимах непрерывного и прерывистого тока.

Графики внешних характеристик.Внешней характеристикой ТП называется зависимость выпрямленного напряжения от среднего значения тока нагрузки при неизменной величине угла управления.Ud=(Id)

Внешняя характеристика определяется внутренним сопротивлением преобразователя, которое приводит к снижению выпрямленного напряжения с ростом нагрузки.

Линейная часть внешних характеристик — это зона непре­рывных токов ТП. Нелинейная часть — зона прерывистых то­ков. Они отделены друг от друга величиной граничных токов -точкой пересечения внешних характеристик с эллипсом, опре­деляющим значения граничных токов.

30. Условия инверторного режима.

Инвертированием называется процесс преобразования электрической энергии постоянного тока в энергию переменного тока.

Нагрузка должна содержать в своем составе источник постоянной ЭДС-;

Схема должна обеспечивать возможность изменения полярности ЭДС нагрузки;

Тиристорный преобразователь должен вырабатывать ЭДС , направленную встречно ЭДС нагрузки и встречно проводящему направлению тиристоров;

Среднее значение ЭДС нагрузки должно превышать среднее значение ЭДС ТП.

31. Понятие явления «опрокидывания», методы предотвращения.

Неустойчивость работы ТП в инверторном режиме при малых значениях угла  (и больших значениях тока, эта неустойчивость проявляется в возможности “опрокидывания” или “прорыва” инвертора, что может быть чревато выходом преобразователя из строя.

Единственным способом прекратить развитие аварии является разрыв якорной цепи, т.е. отсоединение одного источника от другого.

Из диаграммы напряжения видно, что при уменьшении угла управления  коммутация приближается к точке “1”. Условием нормальной работы инвертора является завершение коммутации тока, т.е. переход его с фазы “с” на фазу “а” раньше, чем наступит момент равенства ЭДС коммутируемых фаз в точке “1”. Если же вследствие уменьшения угла  , либо, вследствие увеличения угла  , вызванного возрастанием тока Id , коммутация на закончится до наступления момента “1”, дальше переход тока на фазу “а” прекратится, и, начавшийся процесс коммутации пойдет в обратном направлении, т.е. останется включенной фаза “с”. Как видно из диаграммы, напряжение на фазе “с” очень быстро становится положительным, а это значит, что ЭДС инвертора Ed изменила свою полярность на противоположную и произошло его “опрокидывание”. Недопущение этого явления возможно единственным способом: предотвращение снижения величины угла управления  ниже минимально допустимого его значения min. Эта величина определяется выражением:minmax +  + где: max — максимально возможное значение угла коммутации, определяемое максимально возможным током в любом режиме работы инвертора; — угол, определяемый временем восстановления запирающих свойств вентилей, а точнее, временем их выключения; — асимметрия управляющих импульсов, т.е. самопроизвольное их отклонение от заданной величины в силу ограниченных возможностей системы управления.

Читайте также:  Напряжение первичной обмотки понижающего трансформатора 220 в мощность 44

Если же предотвратить “опрокидывание” инвертора не удалось, необходимо использовать быстродействующие средства защиты, обеспечивающие аварийное отключение инвертора от всех

Из к внешних характеристик ТП, работаю­щего в инверторном режиме, можно определить и обозначить ограничительную линию, указывающую предел значений угла Р и величины тока, допустимых для данного преобразователя. Эти величины между собой связаны. Чем меньше ∠β, тем меньшее значение тока допускается при рабо­те ТП в инверторном режиме.

Источник

Ликбез КО. Лекция №1 Схемы выпрямления электрического тока.

Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическ.

Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:
Uср = Umax / π = 0,318 Umax

где: π — константа равная 3,14.
Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Читайте также:  Напряжение смятия для д16т

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку Rн, диод VD2 и возвращается в обмотку трансформатора через точку «А». Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку Rн, диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2*Umax / π = 0,636 Umax

где: π — константа равная 3,14.
Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».
При конструировании блоков питания для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:

— максимальное обратное напряжение диода – Uобр ;

— максимальный ток диода – Imax ;

— прямое падение напряжения на диоде – Uпр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.

Схемы выпрямителей предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания, устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

Источник

Оцените статью
Adblock
detector