В чем основное отличие электродвигателя от трансформатора

§2.3. Асинхронный двигатель как обобщенный трансформатор

Можно показать, что физические процессы в асинхронном двигателе имеют много общего с процессами в трансформаторе, и асинхронный двигатель можно анализировать на основе системы уравнений и схемы замещения, полученных для трансформатора.
Как и в трансформаторе, в двигателе имеется основной магнитный поток Ф0, сцепленный с проводниками статора (первичной обмоткой) и ротора (вторичной обмоткой). Этот поток вращается c угловой скоростью ω1 = 2πf /рм, т.е. изменяется с частотой напряжения питания f1. При этом в обмотках статора и ротора наводятся ЭДС взаимоиндукции e1 и e2.
При замкнутой обмотке ротора поток Ф0 создается в результате взаимодействия МДС статора и ротора, неподвижных друг относительно друга. Действительно, частота тока в обмотке ротора прямо пропорциональна разности угловых скоростей поля и ротора и числу пар полюсов, т.е.

Обмотка ротора является многофазной, и токи ротора создают МДС, вращающуюся относительно ротора с угловой скоростью ω22 = 2πf2м = ω1ω2. Угловая скорость этой МДС относительно статора ω21 =ω2 +ω22 = ω1, т.е. МДС статора и ротора вращаются относительно статора с одной угловой скоростью. Воздействие МДС ротора на магнитное поде двигателя называется реакцией ротора. В асинхронных двигателях реакция ротора проявляется так же, как реакция вторичной обмотки в трансформаторах.
МДС обмоток статора и ротора создают потоки рассеяния, сцепленные каждый со своей обмоткой и наводящие ЭДС самоиндукции еσ1 и еσ2.

Наряду с этими общими чертами, у асинхронного двигателя имеется и ряд отличий.
1. При уменьшении угловой скорости ротора ω2 увеличивается частота перемагничивания магнитопровода ротора и, соответственно, магнитные потери мощности в роторе на гистерезис и вихревые токи. Однако примерно в этой же пропорции уменьшаются механические потери на трение в подшипниках. В результате в двигателе можно условно выделить переменные, зависящие от нагрузки потери мощности — электрические потери ΔРэ в обмотках, и постоянные потери — сумму магнитных ΔРм и механических ΔРмех. потерь.
2. Согласно (2.9) и (2.8) частота токов в роторе

т.е. она зависит от угловой скорости ротора и в двигательном диапазоне изменяется от f2 = f1 до f2 = 0. Это делает невозможным прямое использование векторных диаграмм и схем замещения трансформатора для анализа асинхронного двигателя.
Поступаем следующим образом.Выразим параметры вращающегося ротора через параметры неподвижного ротора ( s = 1 ), для которого согласно (2.10) f2 = f1 = const.
Выражение ЭДС обмотки фазы вращающегося ротора, записанное по аналогии с (1.7),

где ЭДС при неподвижном роторе

Фм — амплитуда потока Ф0 , w2эф — число эффективных витков обмотки фазы ротора.
Индуктивное сопротивление ротора

где x 2вр = 2πf2·Lσ2 — индуктивное сопротивление обмотки фазы неподвижного ротора; Lσ2 — индуктивность рассеяния.
Пренебрегая поверхностным эффектом будем считать, что R2 =const.
Ток во вращающемся роторе по закону Ома

С учетом (2.11) и (2.13) формула (2.14) преобразуется следующим образом

I2вр= sE2 /√(R2 2 +sx2 2 ) = E2 /√((R2/s) 2 +x2 2 ) (2.15)

Читайте также:  Fz4 трансформатор поджига 07003005

Как видно, ток ротора определен непосредственно через параметры неподвижного ротора и имеет частоту ЭДС неподвижного ротора. Поэтому индекс «вр» у тока ротора в дальнейшем опускается.
Фаза тока ротора, характеризуемая углом ψ2 между E2вр и I2,может
быть определена из выражения (2.16).

3. У двигателя нагрузка механическая, а у трансформатора — электрическая. Для учета этого различия представим активное сопротивление R2 /s в (2.15) как сумму R2 +R2(1-s) /s. Тогда R2 соответствует электрическим потерям в обмотке ротора, а R2(1-s) /s соответствует электрической мощности, преобразуемой в механическую. Поскольку s зависит от момента нагрузки, то сопротивление R2(1-s) /s является эквивалентом механической нагрузки двигателя. Изменение этого сопротивления так же влияет на токи в обмотках и потребляемую мощность, как и изменение момента нагрузки на валу вращающегося ротора. Таким образом, короткозамкнутая обмотка вращающегося ротора асинхронного двигателя подобна вторичной обмотке трансформатора, включенной на условное сопротивление нагрузки:

Следовательно, асинхронный двигатель можно рассматривать как обобщенный трансформатор, у которого сопротивление Rну является эквивалентом механической нагрузки двигателя.
Как видно из (2.15), в двигательном диапазоне наибольший ток в роторе будет при пуске ( s=1). При идеальном холостом ходе двигателя, т.е. при s=0, ток I2 = 0.

Схема замещения.
Схема замещения строится для приведенного асинхронного двигателя, у которого число фаз, расположение обмоток фаз и число витков в обмотке фазы ротора такие же, как на статоре. Приведение параметров ротора к числу фаз и витков обмотки статора осуществляется, как и у трансформатора, исходя из условия инвариантности мощности. Нетрудно показать, что формулы приведения для двигателя примут вид:

где Ke = w1эф / w2эф – коэффицент трансформации ЭДС;
Ki = m1 w1эф / m2 w2эф – коэффицeнт трансформации тока;
m1 и m2 — число фаз статора и ротора.

В соответствии с выводами, сделанными в предыдущем разделе настоящего параграфа, в качестве схемы замещения приведенного асинхронного двигателя (в расчете на одну фазу) может использоваться схема замещения однофазного трансформатора (см. рис. 1.6) с заменой сопротивления ветви нагрузки на условное сопротивления Rну по (2.17). Получающаяся схема замещения двигателя изображена на рис. 2.10.


Рис. 2.10

Источник

Сравнение асинхронных машин и трансформаторов

В асинхронном двигателе роль вторичной обмотки трансформатора играет роторная обмотка, а статорная является первичной обмоткой. Несмотря на то, что между обмотками статора и ротора асинхронной машины осуществляется постоянная трансформаторная связь, аналогия между асинхронным двигателем и трансформатором далеко не полная. Основные отличия состоят в следующем:

1) В трансформаторе обмотка каждой фазы расположена на отдельном стержне, а распределённые фазные обмотки асинхронного двигателя имеют пространственный сдвиг и заложены в пазах одного якорного сердечника. Вследствие этого в сердечнике асинхронной машины поток вращается, а в сердечнике трансформатора пульсирует.

2) В трансформаторе нагрузка присоединяется к вторичной обмотке, в двигателе вторичная обмотка замкнута накоротко и в результате взаимодействия её тока с вращающимся потоком (полем) машины создаётся электромагнитный момент, который уравновешивается моментом нагрузки на валу.

Читайте также:  Количество витков трансформатора компьютерного блока питания

3) В трансформаторе первичная и вторичная обмотки неподвижны, у асинхронной машины обмотка ротора перемещается относительно обмотки статора, в результате чего величина и частота ЭДС ротора переменны, зависят от скольжения s.

4) В обмотках вращающегося асинхронного двигателя происходит преобразование частоты и числа фаз. В результате взаимодействия вращающихся неподвижных друг относительно друга полей статора и ротора происходит преобразование электрической энергии в механическую.

5) В магнитопроводе асинхронной машины имеется большой воздушный зазор, вследствие чего величина намагничивающего тока и параметры, характеризующие ветвь намагничивания у асинхронной машины и трансформатора, различны. Ток ХХ асинхронного двигателя достигает 30-35%, а у силового трансформатора – 3-7% от номинала.

Таким образом, мы видим, что асинхронный двигатель представляет собой своего рода трансформатор, вторичная обмотка которого находится в непрерывном вращательном движении.

15.Синхронные машины. Ротор синхронной машины.

Устройство синхронных машин. Синхронные машины вне зависимости от режима работы состоят из двух основных частей: неподвижного статора, выполняющего функции якоря и ротора, вращающегося внутри статора и служащего индуктором (рис. 4.1).

Статор синхронной машины (СМ) называется якорем. На статоре расположена трехфазная обмотка, равномерно распределенная по пазам (обмотка якоря). Число полюсов обмотки статора равно числу полюсов ротора [1].

Ротор СМ называется индуктором и имеет обмотку возбуждения (ОВ), питаемую постоянным током . Токоподвод осуществляется через два контактных кольца и щетки.

Статор трехфазной синхронной машины аналогичен статору трехфазного асинхронного двигателя. Он состоит из корпуса /, цилиндрического сердечника 2, набранного из отдельных пластин электротехнической стали, и трехфазной обмотки 3, уложенной в пазы сердечника.

Ротор синхронной машины представляет собой электромагнит постоянного тока, который создает магнитное поле, вращающееся вместе с ротором. Ротор имеет обмотку возбуждения 4, которая через специальные контактные кольца 5 питается постоянным током от выпрямителя или от небольшого генератора постоянного тока, называемого возбудителем.

В отечественной энергетике также используются синхронные машины с «бесщеточным» возбуждением. Обмотка ротора таких машин питается от выпрямителя, вращающегося вместе с ротором. Выпрямитель в свою очередь получает питание от возбудителя, имеющего вращающуюся вместе с ротором трехфазную обмотку, возбуждаемую неподвижными постоянными магнитами.

Роторы синхронных машин бывают двух типов: с явно выраженными и неявно выраженными полюсами.

Роторы с явно выраженными полюсами (рис. 4.1) применяются в сравнительно тихоходных машинах (80 – 1000 об/мин), например гидрогенераторах; они имеют значительноечисло полюсов. Конструктивно роторы этого типа состоят из вала , ступицы , полюсов , укрепляемых в шлицах ступицы, полюсных катушек возбуждения, размещенных на полюсах. Поверхность полюсного наконечника полюсов имеет такой профиль, что магнитная индукция в воздушном зазоре машины распределяется примерно по синусоидальному закону. Для быстроходных машин (турбогенераторы, синхронные двигатели, турбокомпрессоры и т. п.) явнополюсная конструкция ротора неприменима из-за сравнительно большого диаметра ротора и возникающих в связи с этим недопустимо больших центробежных сил.

Читайте также:  Кожух защитный для силового трансформатора ктп 160 250 ква

Большей механической прочностью обладает ротор с неявно выраженными полюсами. Он состоит (рис. 4.3) из сердечника 1 и обмотки возбуждения 2. Сердечник изготовляется из стальной поковки цилиндрической формы. На его внешней поверхности фрезеруются пазы, в которые закладывается обмотка возбуждения.

Обмотка возбуждения распределяется в пазах сердечника так, чтобы создаваемое ею магнитное поле было распределено в пространстве по закону, близкому к синусоидальному.

Баланс мощностей

– система показателей, характеризующая соответствие суммы значений нагрузок потребителей энергосистемы (ОЭС) и необходимой резервной мощности величине располагаемой мощности энергосистемы.

Для любых замкнутых цепей сумма мощностей источников электрической энергии РИ, равна сумме мощностей, расходуемых в приемниках энергии РП. Мощность источников указывает на то, какое количество работы они могут выполнить в электрической цепи каждую секунду. Максимально допустимая мощность приемников это то, что в нормальных условиях может выдержать пассивный элемент. Если превысить допустимую мощность резисторов, обычно указываемую на корпусе, то он может перегреться, его проводящий слой разрушится, почернеет окраска корпуса и деталь выйдет из строя.

Мощность, отдаваемая источниками ЭДС, равна. PИ = E I

I — ток (А), протекающий через этот источник, причем если положительное направление тока совпадает с направлением ЭДС, в противном случае PИ = -EI.

Если в резисторе не происходит химических реакций, то мощность выделяется в форме тепла, согласно известному закону Джоуля. PП = R I 2

I — постоянный ток (А), протекающий через резистор;

PП — мощность потерь, измеряемая в ваттах (Вт);

R — сопротивление резистора (Ом).

Общее количество теплоты, выделяемое током в цепи, не всегда совпадает с соответствующим джоулевым теплом. Так на месте контакта двух различных проводников, помимо джоулева тепла, выделяется также, так называемое тепло Пельтье, зависящее от сторонних ЭДС, определяемых в свою очередь химической природой проводников, их температурой и т.д. При наличии в проводнике градиента температур в нем выделяется еще и теплота Томсона. В большинстве практических случаев при небольших токах теплотой Пельтье и Томсона можно пренебрегать.

Равенство выражений мощностей источников и мощностей приемников называется уравнением баланса мощностей.

План составления баланса мощностей

1.Если в цепи есть источники тока, то следует любым методом найти напряжения на зажимах источников тока Uk.

2.Вычислить мощность источников.

PИ = n m
k = 1 Uk * Jk + k = 1 Ek * Ik

N — количество источников тока в цепи;

M — количество источников ЭДС в цепи;

Uk — напряжение на источниках тока Jk;

m
k = 1 Ek * Ik
алгебраическая сумма, здесь положительны те из слагаемых, для которых направления ЭДС Еk и соответствующего тока Ik совпадают, в противном случаи слагаемое отрицательно;
n
k = 1 Uk * Jk
алгебраическая сумма, здесь положительны те из слагаемых, для которых направление напряжения на зажимах источника тока Uk и направление его тока Jk во внешней цепи совпадают, в противном случаи слагаемое отрицательно.

3.Вычислить мощность, расходуемую в приемниках.

PП = L
k = 1 I 2 k * Rk

L — количество приемников в цепи;


k = 1 I 2 k * Rk

— арифметическая сумма, здесь должны быть учтены как внешние резисторы, так и внутренние сопротивления самих источников.

Источник

Оцените статью
Adblock
detector