В чем отличие истинной диаграммы напряжений от условной

Диаграммы условных и истинных напряжений

Диаграмма растяжения в осях Δl и P является по существу характеристикой образца из данного материала, так как при одном и том же значении силы P величина удлинения зависит от поперечных и продольных размеров образца. Чтобы исключить влияние размеров образца и получить характеристику материала, диаграмму растяжения строят в координатах σ — ε .

При переходе от нагрузок P к напряжениям σ и от абсолютных удлинений Δl к относительным ε обычно пренебрегают изменением площади сечения образца в процессе растяжения, а также неравномерностью распределения деформаций по длине его рабочей части после образования шейки. Подсчитывают σ делением нагрузки P на первоначальную площадь F o сечения образца, а ε — делением удлинения всей его рабочей части на ее первоначальную длину l o . Полученная таким путем диаграмма называется диаграммой условных напряжений, по характеру она не отличается от диаграммы в осях P — Δl .

Диаграмма условных напряжений для малоуглеродистой стали показана на Рис. 4.6. Уравнение линейного участка этой диаграммы на начальной стадии нагружения σ = Eε представляет собой уже известную математическую запись закона Гука при одноосном растяжении. Следовательно, численно модуль упругости равен тангенсу угла α наклона к оси абсцисс прямолинейного участка диаграммы растяжения.

Диаграмма растяжения, по оси ординат которой откладывается напряжение, полученное делением силы на наименьшую площадь сечения образца, а по оси абсцисс — наибольшее удлинение в данный момент нагружения, называется диаграммой истинных напряжений. Эта диаграмма показана на Рис.4.6 пунктиром. Здесь падения напряжений за точкой C не наблюдается, так как площадь сечения в шейке уменьшается быстрее, чем падает нагрузка, поэтому средние напряжения в этом месте возрастают. Вследствие образования шейки распределение напряжений по сечению становится неравномерным, а частицы материала в этом месте испытывают растяжение не только в продольном, но также в радиальном и окружном направлениях. Это приводит к образованию внутри шейки поперечной трещины. Различие диаграмм условных и истинных напряжений становится значительным только после образования шейки.

Источник

Условная и истинная диаграммы напряжений

По результатам испытания образца на растяжение можно установить соотношение между напряжениями и деформациями. Графически такую зависимость изображают в виде диаграммы напряжений. Различают диаграммы условных и истинных напряжений.

Диаграмма условных напряжений в координатах «условные напряжения – относительные деформации» показана на рисунке 5.

Вид кривой подобен кривой в координатах Р – Δl, т.к. по осям откладывают величины, пропорциональные соответственно Р и Δl; построение диаграммы напряжений осуществляют по точкам σпц, σт, σв, σк. Соответствующие этим напряжениям относительные деформации ε вычисляют как частное от деления соответствующей абсолютной деформации Δl на lо. Построенное таким образом диаграмма напряжений является приближённой (условной), потому что напряжения найдены по начальной площади поперечного сечения образца.

Диаграмму действительных (истинных) напряжений строят в координатах: истинные напряжения S – относительное сужение ψ. Для нахождения истинного напряжения необходимо знать действительную площадь поперечного сечения образца в данный момент испытания. Некоторые истинные характеристики можно определить, не проводя специальных измерений образца в процессе испытания.

ε
σк
σв
σт
σпц
σ
σпц

Рис. 5. Диаграмма условных напряжений

Предел пропорциональности Sпц принимают равным условному пределу пропорциональности, пренебрегая незначительными изменениями площади сечения образца в пределах упругой зоны. Сужение площади ψ, соответствующее этому напряжению, можно принять равным нулю.

Предел прочности: ,

где F1 – площадь в данный момент испытания.

Принимая во внимание равномерную остаточную деформацию образца до Рmax и в дальнейшем сосредоточение деформации около шейки, можно считать с некоторым приближением площадь, соответствующую Рmax, равной площади в пределах цилиндрической части образца (измеренной после испытания). Соответствующее сужение

,

; ,

Диаграмма истинных напряжений показана на рисунке 6.

Sв
Sпц
Sк
ψ
S

Рис. 6. Диаграмма истинных напряжений.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

iSopromat.ru

Диаграмма напряжений показывает основные механические характеристики материалов (в основном металлов), такие как: предел пропорциональности, текучести, прочности и т.д.

Для построения диаграммы используют диаграмму растяжения испытуемого образца, изготовленного из материала, характеристики которого требуется изучить.

После эксперимента по испытанию на растяжение, на полученной диаграмме F-Δl отмечаются несколько характерных точек, в которых определяются значения растягивающих усилий F и соответствующие им абсолютные деформации Δl .

Далее для полученных значений точек диаграммы определяются соответствующие им нормальные напряжения σ , по формуле:

где:
Fi — значение растягивающей силы в характерной точке диаграммы;
A0 — площадь поперечного сечения рабочей части образца,

где l0 — начальная длина рабочей части испытуемого образца.

Затем по полученным данным в системе координат σ-ε строится диаграмма напряжений (рис. 1)

Рис. 1 Условная и истинная диаграмма напряжений для малоуглеродистой стали

По этой диаграмме определяются следующие механические характеристики материала:

σ пц — предел пропорциональности
Определяется как крайняя верхняя точка начального прямолинейного участка диаграммы.

Читайте также:  Прибор электромеханический для измерения напряжения

σт — предел текучести
Точка после которой линия диаграммы некоторое время движется параллельно оси деформаций ε .

Практически горизонтальный участок диаграммы, следующий за пределом текучести называется площадкой текучести.

σ пч — предел прочности ( σ в — временное сопротивление)
Высшая точка условной диаграммы;

σ р — напряжение в момент разрыва образца ( σ р у — условное и σ р и — истинное).

Конечная точка диаграммы, при которой происходит разрыв образца.

здесь Aш — площадь поперечного сечения в области «шейки» образца.

При более тонких испытаниях по данной диаграмме можно определить предел упругости стали.

На рисунке 1 штриховой линией показан фрагмент истинной диаграммы напряжений. Возрастание напряжений после прохождения предела прочности объясняется тем, что в этот момент в рабочей части образца образуется локальное утоньшение («шейка») уменьшающая его площадь поперечного сечения A , что в свою очередь приводит к увеличению напряжений при уменьшающейся величине растягивающей силы.

Кроме того, по диаграмме напряжений можно приближенно определить величину модуля упругости I рода материала образца:

он определяется как отношение напряжений и относительных деформаций, для любой точки диаграммы расположенной от ее начала до предела пропорциональности, либо как тангенс угла наклона начального участка диаграммы к оси ε .

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

В УСЛОВНЫХ И ИСТИННЫХ КООРДИНАТАХ

ПОЛУЧЕНИЕ И АНАЛИЗ ДИАГРАММ РАСТЯЖЕНИЯ

Целью настоящей лабораторной работы является приобретение навыков записи, построения и анализа диаграмм деформации, а также изучение графического и аналитического способов определения основных характеристик прочности и пластичности при механических испытаниях на растяжение.

Испытания на растяжение являются самым распространенным видом статических механических испытаний. Для полной характеристики механических свойств образцы растягиваются до разрушения на специальных, часто универсальных, испытательных машинах (рис. 1), основными узлами которых являются механизм передачи на образец растягивающего усилия и механизм измерения силы сопротивления образца деформации. В процессе испытания зависимость силы сопротивления деформации от величины абсолютного удлинения образца фиксируется в двухкоординатной системе: усилие P – удлинение Dl. Эта зависимость представляет собой результат испытания и называется первичной диаграммой растяжения.

Многообразие первичных диаграмм растяжения для различных материалов можно в первом приближении свести к нескольким типам. На рис. 2 показаны разновидности первичных диаграмм растяжения. Диаграммы могут не отражать резкий переход от упругой деформации к пластической (рис. 2, а, б, в), но могут и отражать (рис. 2, г, д, е). Во втором случае переход имеет вид горизонтального участка, называемого площадкой текучести, или проявляется в виде зуба текучести.

Рис. 2. Первичные диаграммы растяжения: а – хрупкое растяжение; б – разрушение после равномерной деформации; в – разрушение после образования шейки; г, д, е – определение нагрузки Pт для расчета физического предела текучести в зависимости от вида диаграмм.

Испытания на растяжение согласно ГОСТ 1497-73 проводятся на цилиндрических или плоских образцах различных размеров. В качестве основных применяются цилиндрические образцы с диаметром рабочей части d0 = 10 мм и начальной расчетной длиной l0 = 10d0 или l0 = 5d0. Образцы изготавливаются на металлорежущих станках и имеют гладкие или резьбовые головки для установки в захватах испытательной машины. Скорость перемещения подвижного захвата, выражаемая в мм/мин, может быть разной, но, как правило, не превышает 0,4 от расчетной длины образца.

Скорость деформации образца VД, с –1 , можно оценить следующим образом:

, (1)

где VЗ – скорость движения захватов испытательной машины, мм/мин;

Для возможности сравнения результатов испытаний различных по размерам образцов бывает целесообразно установить связь между условными напряжениями s и относительным удлинением d. Вид диаграммы растяжения при переходе к координатам s – d не меняется.

Определение механических свойств производится как непосредственно во время испытания (для определения предела пропорциональности и предела упругости этот способ предпочтительнее), так и после испытания. Во втором случае исходными материалами являются диаграмма растяжения и разрушившийся образец. В данной лабораторной работе определение механических свойств проводится после испытания графическим методом по диаграмме растяжения.

Расчет прочностных свойств

Диаграмма растяжения позволяет определять прочностные свойства сопротивления как малым пластическим деформациям (sПЦ – предел пропорциональности, sу – предел упругости, sт – предел текучести), так и большим пластическим деформациям (sв – предел временного сопротивления или предел прочности). Прочностные свойства выражаются в условных напряжениях, рассчитанных по формуле:

, (2)

где Pi – растягивающая нагрузка, F0 – площадь поперечного сечения до испытания. В системе СИ нагрузку P выражают в ньютонах, площадь поперечного сечения – в м 2 . Прочностные механические свойства чаще всего выражают в мегапаскалях при соотношении:

1 МПа = 10 6 Н/м 2 = 1 МН/м 2 .

В заводской практике чаще используется оценка прочности в кг/мм 2 или кгс/мм 2 , равная 1 кг/мм 2 = 10 МПа.

Предел пропорциональности sПЦ – условное напряжение, соответствующее отклонению от линейного хода диаграммы растяжения, задаваемого определенным допуском (10%, 25%, 50%) на уменьшение тангенса угла наклона кривой к оси удлинения. Величина допуска указывается в обозначении предела пропорциональности: sПЦ50, sПЦ25, sПЦ10.

Читайте также:  Из однородной металлической проволоки сделано кольцо напряжение

При определении предела пропорциональности графически на диаграмме растяжения вначале продолжают прямолинейный участок упругой деформации до пересечения с осью абсцисс в точке О’ (рис. 3), которую принимают за новое начало координат, исключая таким образом искаженный из-за недостаточной жесткости машины начальный участок диаграммы. Далее на произвольной высоте в пределах упругой области проводят прямую АВ, перпендикулярную оси нагрузок. На ее продолжении вправо откладывают отрезок ВС = 0,5 АВ и проводят линию ОС. Если теперь провести касательную DЕ к кривой растяжения параллельно ОС, то точка касания F определит нагрузку PПЦ и предел пропорциональности может быть определен:

(3)

Предел упругости sу – условное напряжение, соответствующее появлению остаточной деформации определенной, заданной величины. Обычно остаточная деформация составляет 0,05% от расчетной длины образца lo, но этот допуск может быть и меньше, вплоть до 0,001%. Использованный при расчете допуск указывается в обозначении условного предела текучести: s0,05, s0,001 и т. п.

Для определения, например, s0,05 вычисляется величина заданного остаточного удлинения, исходя из расчетной длины образца. Найденная величина увеличивается пропорционально масштабу диаграммы по оси деформаций (обычно не менее 50:1) и отрезок полученной длины О’B откладывается по оси абсцисс вправо от точки О’ (рис. 4). Из точки B проводится прямая, параллельная упругому участку диаграммы О’А. Точка пересечения F с кривой растяжения определяет нагрузку P0,05, отвечающую пределу упругости:

(4)

Рис. 3. Графический способ определения предела пропорциональности.

Условный предел текучести s0,2 – условное напряжение, при котором остаточная деформация достигает определенной величины, обычно 0,2% от рабочей длины образца. Допуск на остаточное удлинение может быть и другим, например, 0,1% или 0,3%.

Рис. 4. Графический способ определения предела упругости.

Методика определения условного предела текучести по диаграмме растяжения аналогична методике определения предела упругости. Вычисляют величину заданного остаточного удлинения, исходя из рабочей длины образца (l=l0+d0). Найденная величина увеличивается пропорционально масштабу диаграммы по оси деформаций, и отрезок полученной длины откладывается по оси абсцисс вправо от точки О’ (рис. 4).

Отрезок О’B, таким образом, равен 0,002·l·M, где М – масштаб по оси удлинений. Ордината точки пересечения F прямой, параллельной ОА, с кривой растяжения определяет в этом случае нагрузку P0,2, отвечающую пределу текучести:

(5)

Физический предел текучести sт – условное напряжение, соответствующее наименьшей нагрузке площадки текучести, когда деформация образца происходит без увеличения нагрузки. В этом случае диаграмма деформации имеет вид, подобный указанному на рис. 2, г, д, позволяющий определять физический предел текучести, как

(6)

Когда имеется зуб текучести (рис. 2, е), вводится понятие о верхнем sт в и нижнем sт н пределах текучести.

Временное сопротивление или предел прочности sв условное напряжение, соответствующее наибольшей нагрузке Pmax на диаграмме растяжения (рис. 2, а, б, в). Временное сопротивление вычисляется по формуле:

(7)

Расчет пластических свойств

Для расчета пластических свойств предпочтительно иметь образец после испытания. Части образца складываются в месте разрыва так, чтобы между ними не было зазора. На таком сложенном образце измеряется длина расчетной части lк после разрыва и минимальный диаметр dк в двух взаимно перпендикулярных направлениях в месте разрыва.

Относительное удлинение d , %, определяется по формуле:

(8)

В случае образования шейки эта величина зависит от размеров образца. При этом относительное удлинение d имеет индекс: d2,5, d5, d10, указывающий кратность образца ­– отношение расчетной длины до испытания к диаметру образца до испытания (l0/d0).

Относительное сужение y, %, определяется по формуле:

, (9)

где Fк вычисляется по среднему арифметическому значению dк.

Расчет пластических свойств возможен и по диаграмме растяжения. Более того, именно он позволяет из общих свойств пластичности d и y выделить dравн и yравн, характеризующие способность материала к равномерной деформации, т.е. к накапливанию ее во всем объеме, без локализации. Способность к равномерной деформации более физически обоснованно характеризует пластичность материала, чем общие свойства d и y в случае, если при испытании образец разрушается с образованием шейки. Чем больше доля сосредоточенной деформации (т.е. чем короче образец), тем в большей степени d и y характеризуют именно ее, а не предельную пластичность материала.

Для разделения относительного удлинения на равномерное и сосредоточенное на диаграмме растяжения проводят линии параллельно упругому участку диаграммы из точек максимальной и предельной нагрузки до пересечения с осью абсцисс, как это опказано на рис. 2, в. Определенные по оси удлинений отрезки с учетом масштаба – это абсолютные величины удлинения образца в процессе равномерной деформации (Dlравн) и в процессе образования шейки (Dlсоср).

Равномерное относительное удлинение dравн, %, определяется по формуле:

(10)

Сосредоточенное относительное удлинение dсоср, %, определяется по формуле:

Читайте также:  Как установить регулятор напряжения в квартире

(11)

Равномерное относительное сужение yравн, %, определяется из соотношения:

(12)

Это соотношение следует из закона постоянства объема: l0F0= lравнFравн, справедливого в области равномерной деформации.

Сосредоточенное относительное сужение yсоср, %, находят из разницы:

Таким образом, если образец при испытании деформировался равномерно вплоть до разрушения (рис. 2, б, образец при растяжении не дошел до образовании шейки), то свойства d и y одинаково характеризуют предельную пластичность материала. Если шейка образуется, то целесообразно отдельно определять равномерное и сосредоточенное относительное удлинение. Кроме того, в этом случае для характеристики предельной способности материала к пластическому растяжению более правильно использовать относительное сужение y, признавая его характеристикой, в основном, сосредоточенной деформации. Для пластичных материалов yсоср может составлять до 80% и более от общей величины y.

Построение диаграмм растяжения в истинных координатах

Диаграммы растяжения в истинных координатах строятся для более строгого анализа свойств и деформационного упрочнения при растяжении. Они строятся в координатах истинные напряжения – истинные деформации. Истинные напряжения получают, учитывая изменение сечения при деформации и относя нагрузку не к исходному сечению, а к сечению в каждый данный момент деформации. Следовательно, чем пластичнее материал, тем в большей степени истинные напряжения отличаются от условных.

Построение диаграммы растяжения в истинных координатах требует многократного измерения диаметра образца в процессе испытания. Одновременно с измерением диаметра образца диаграмма растяжения получает отметку, по числу которых она разделяется на ряд участков – этапов испытания. На каждом этапе вычисляется площадь поперечного сечения Fi и определяется нагрузка Pi. Истинное напряжениеSi рассчитывается по формуле:

. (14)

Величина истинных деформаций определяется как истинное относительное удлинение ei

, (15)

если измерялась длина расчетной части образца в процессе испытания, либо как истинное относительное сужение ji

. (16)

Возможный вид диаграммы растяжения в истинных координатах показан на рис. 5. На стадии упругой деформации диаграмму часто изображают совпадающей с осью ординат, на которой откладывается предел текучести, практически одинаковый в условных и истинных значениях напряжений ввиду незначительности изменения размеров образца при этих напряжениях.

Построение диаграмм растяжения в истинных координатах позволяет рассчитывать истинное сопротивление разрыву Sк – характеристику прочности, определяемую как отношение нагрузки в момент разрушения к площади поперечного сечения образца в месте разрыва:

, (17)

а также пластические свойства –

истинное относительное удлинение (18)

истинное относительное сужение . (19)

Рис. 5. Диаграмма растяжения в истинных координатах.

Весьма существенно, что на основании диаграммы можно оценить способность материала к деформационному упрочнению, называемую коэффициентом (или модулем) деформационного упрочнения. Коэффициент деформационного упрочнения К = tg a. он может быть различным на разных стадиях растяжения (рис. 5). Средний для всего процесса коэффициент упрочнения может быть определен:

. (20)

Итак, необходимо отчетливо представлять физический смысл рассчитываемых механических характеристик. Если пластические свойства характеризуют способность материала к равномерной или сосредоточенной деформации, а прочностные свойства sпц, sу, sт являются показателями сопротивления материала малым пластическим деформациям, то трактовка таких свойств, как sв и Sк значительно шире. Так, величина sв имеет строгий физический смысл лишь при почти полном отсутствии пластической деформации, когда диаграмма растяжения имеет вид, подобный показанному на рис. 2, а. В этом случае имеет место хрупкое разрушение, sв » Sк и являются характеристиками сопротивления разрушению в условиях растяжения, т.е. хрупкой прочностью.

Для более пластичных материалов (рис. 2, б, в) sв – не более чем условное напряжение в момент разрушения или условное напряжение, соответствующее максимальной нагрузке. В том и другом случае величину sв можно считать условной характеристикой сопротивления значительной, но равномерной деформации растяжением. Величина Sк для материалов, проявляющих пластичность, достаточно строго характеризует предельную прочность материала лишь в случае рис. 2, б, поскольку образец равномерно деформируется в условиях не изменяющегося напряженного состояния вплоть до разрыва.

В случае рис. 2, в, т.е. при образовании шейки, схема одноосного растяжения меняется на сложное напряженное состояние, и расчет по формуле (17) означает, что Sк > sв и характеризует лишь некое среднее продольное напряжение в момент разрушения, т.е. сопротивление значительным пластическим деформациям.

Вышесказанное означает, что при сопоставлении прочностных свойств sв и Sк различных материалов следует учитывать конкретный смысл этих характеристик для каждого материала, проявляющийся в том или ином виде его диаграммы растяжения.

Задание к лабораторной работе

1. Записать диаграмму растяжения на разрывной машине. В процессе записи делать остановки (i = 8-10), не снимая нагрузки, измеряя на каждой остановке диаметр образца и записывая значение диаметра и соответствующей нагрузки. Результаты измерений и расчетов занести в табл. 1.

2. Произвести расчет прочностных и пластических свойств по методике из соответствующих разделов руководства.

3. По данным табл. 1 построить диаграммы растяжения в условных s = f (y) и истинных S = f (j) координатах.

5. Заполнить таблицу механических свойств по форме табл. 2.

6. Оформить отчет по работе.

Расчетные данные для построения диаграммы растяжения

Источник

Оцените статью
Adblock
detector