Векторная диаграмма силового трехфазного трансформатора

ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ

ЭКВИВАЛЕНТНАЯ СХЕМА ТРАНСФОРМАТОРА

Одним из методических приемов, облегчающих исследование электромагнитных процессов и расчет трансформаторов, является замена реального трансформатора с магнитными связями между обмотками эквивалентной электрической схемой (рис. 4.6.1).

На этом рисунке представлена эквивалентная схема приведенного трансформатора, на которой сопротивления г и х условно вынесены из соответствующих обмоток и включены с ними последовательно. Т.к. k = 1, то E1 = E2. Поэтому точки А и а, а также Х и х на приведенном трансформаторе имеют одинаковые потенциалы, что позволит электрически соединить эти точки, получив Т-образную эквивалентную схему замещения (рис. 4.6.2).

Произведя математическое описание этой схемы методами Кирхгофа, можно сделать вывод о том, что она полностью соответствует уравнениям ЭДС и токов реального трансформатора (см. раздел 4.5). Отсюда появляется возможность электрического моделирования трансформатора на ЭВМ. Проводя исследования относительно нагрузки z2‘ (единственного переменного параметра схемы), можно прогнозировать реальные ха-рактеристики трансформатора, начиная от холостого хода (z2‘= ) и кончая коротким замыканием (z2‘ = 0).

Построение векторной диаграммы удобнее начинать с вектора основного потока Ф. Отложим его по оси абсцисс. Вектор I10 опережает его на угол a . Далее строим векторы ЭДС Е1 и Е2‘, которые отстают от потока Ф на 90°. Для определения угла сдвига фаз между E2‘ и I2‘ следует знать характер нагрузки. Предположим, она — активно-индуктивная. Тогда I2‘ отстает от E2’ на угол f2.
Получилась так называемая заготовка векторной диаграммы (рис. 4.7.1.). Для того чтобы достроить ее, необходимо воспользоваться тремя основными уравнениями приведенного трансформатора.

Воспользуемся вторым основным уравнением:

и произведем сложение векторов.
Для этого к концу вектора E2‘ пристроим вектор — j I2‘ x2‘, а к его концу — вектор — I2‘ r2‘. Результирующим вектором U2‘ будет вектор, соединяющий начало координат с концом последнего вектора.
Теперь используем третье основное уравнение

из которого видно, что вектор тока I1 состоит из геометрической суммы векторов I10 и — I2‘. Произведем это суммирование и достроим векторную диаграмму.
Теперь вернемся к первому основному уравнению:

Чтобы построить вектор — Е1 , нужно взять вектор +Е1 и направить его в противоположную сторону.
Теперь можно складывать с ним и другие векторы: + j I1 x1 и I1 r1 . Первый будет идти перпендикулярно току, а второй — параллельно ему. В результате получим суммарный вектор u1.
Построенная векторная диаграмма имеет общий характер. По этой же методике можно осуществить ее построение как для различных режимов, так и для разных характеров нагрузки.

Читайте также:  Конденсаторный трансформатор принцип работы

Источник

Понятие группы соединения обмоток трансформаторов, таблицы и схемы

Любой трансформатор, за исключением автотрансформатора, имеет минимум две обмотки: высокого и низкого напряжений. Также у трехфазных устройств каждая из обмоток состоит из трех частей (по числу фаз). Большое количество частей дает возможность множества вариантов включения. Чтобы избежать путаницы, все группы соединения обмоток трансформатора для трехфазных устройств стандартизированы и приведены к единой системе для безошибочного подключения устройств и возможности параллельной работы.

Понятие группы соединение обмоток трехфазного трансформатора

В трехфазных сетях используется два вида соединений: звезда и треугольник. При изготовлении конструкций может показаться, что существует всего четыре вида расположения обмоток:

  1. Звезда-звезда.
  2. Звезда-треугольник.
  3. Треугольник-звезда.
  4. Треугольник-треугольник.

На деле все обстоит сложнее, поскольку в каждом виде соединений (звезде или треугольники) части обмоток могут быть соединены по-разному. В качестве примера можно привести обычных двухобмоточный трансформатор. Если у такого устройства совпадают начала и концы обмоток, то сдвиг фаз будет равен 0. Разворот одной из обмоток даст сдвиг фаз 180 0 .

Также встречаются z-образные соединения обмоток (зигзаг). В таких конструкциях каждая из обмоток состоит из двух частей, расположенных на различных стержнях магнитопровода трансформатора.

Трехфазная сеть характеризуется сдвигом фаз одна относительно другой на 120 0 . Поэтому всего насчитывается 12 групп соединения. Каждая группа характеризуется определенным сдвигом одноименных фаз на входе и выходе трансформатора.

Условные обозначения и расшифровка

Группы маркируются числами от 0 до 11. Для удобства и стандартизации принято следующее:

  • однотипные соединения (∆/∆, Y/Y) имеют четные номера;
  • разнотипные соединения (∆/Y, Y/∆) – нечетные.

Трехфазные трансформаторы выполняются на стержневых магнитопроводах. Каждая из фаз располагается на отдельном стержне. Это во многом упрощает дальнейшую работу и согласование устройств между собой.

Если у трансформатора одинаковые фазы намотаны на одних стержнях, то группы соединений при этом называются основными (0, 6, 11, 5). Остальные группы – производные.

Так как минимальный сдвиг фаз может составлять 30 0 , то количество вариантов равно 12, что соответствует положениям стрелок часов. 0-е и 12-е положения совпадают. На основании этого говорят, что номер группы совпадает с положением часовой и минутной стрелок. Сдвиг фаз вычисляется просто:

Приняты следующие обозначения на электросхемах и устройствах:

  • Y, У – звезда;
  • Yн, Ун – звезда на стороне низкого напряжения;
  • Yо, Уо – звезда с нулевой точкой;
  • ∆, Д, D – треугольник;
  • ∆н, Дн, Dн – треугольник на стороне низкого напряжения.
Читайте также:  Трансформаторы для регулирования частоты

Пример маркировки двухобмоточного трансформатора:

  • ∆/Yн – 11. Первичная обмотка треугольник, вторичная (понижающая) звезда. Сдвиг фаз 330 0 ;
  • Y/Yо -0. Обе обмотки соединены звездой, вторичная с выведенной нулевой точкой. Сдвиг фаз отсутствует.

Также на электрических схемах обмотки высокого напряжения (ВН) обозначают символами:

  • A,B, C – начало обмотки;
  • X, Y, Z – конец обмотки.

Аналогично для стороны низкого напряжения:

Подобным образом маркируются многообмоточные устройства, например:

Вместо нулевой группы может указываться двенадцатая, что совершенно равнозначно.

Как строятся векторные диаграммы

При построении векторных диаграмм надо запомнить правило, что сдвиг фаз меду фазами равняется 120 0 , то есть, при равенстве напряжений, концы векторов всегда будут образовывать равносторонний треугольник.

Наиболее просто составляется диаграмм для соединения звезда. В центре диаграммы ставится точка, которая соответствует объединенным концам обмоток. Из центра под углами 120 0 проводятся векторы фаз. Вертикально проводят вектор средней фазы.

Для треугольника начерно проводят линию, параллельную соответствующей фазы звезды, а от ее концов, соответственно, подсоединенные к ней оставшиеся две фазы. Должно соблюдаться условие – все стороны треугольника должны быть параллельны соответствующим фазам звезды. Искомыми векторами будут проведенные линии из центра треугольника к его вершинам.

Векторные диаграммы рисуются для высокой и низкой сторон, а затем совмещаются с единым центром. Угол между одинаковыми фазами будет показывать номер группы соединения, выраженный в часах.

Отсчет нужно брать от вектора высокого напряжения к низкому.

Таблица групп соединений

В таблице ниже представлены обозначения групп соединения и чередование фаз низкой и высокой сторон.

Группа соединения Обозначение Чередование фаз
0 Y/Y-0 C, B, A
c, b, a
∆/∆-0 C, B, A
c, b, a
1 Y/∆-1 C, B, A
c, b, a
∆/Y-1 C, B, A
c, b, a
2 Y/Y-2 C, B, A
c, b, a
∆/∆-2 C, B, A
а, c, b
3 Y/∆-3 C, B, A
b, a, с
∆/Y-3 C, B, A
b, a, с
4 Y/Y-4 C, B, A
b, a, с
∆/∆-4 C, B, A
b, a, с
5 Y/∆-5 C, B, A
c, b, a
∆/Y-5 C, B, A
c, b, a
6 Y/Y-6 C, B, A
c, b, a
∆/∆-6 C, B, A
c, b, a
7 Y/∆-7 C, B, A
c, b, a
∆/Y-7 C, B, A
c, b, a
8 Y/Y-8 C, B, A
а, c, b
∆/∆-8 C, B, A
c, b, a
9 Y/∆-9 C, B, A
b, a, с
∆/Y-9 C, B, A
b, a, с
10 Y/Y-10 C, B, A
c, b, a
∆/∆-10 C, B, A
b, a, с
11 Y/∆-11 C, B, A
c, b, a
∆/Y-11 C, B, A
c, b, a

Определение методом гальванометра

Существует несколько способов определить правильность подсоединения обмоток. Самый простой способ – использование вольтметра магнитоэлектрической системы. Его еще называют методом постоянного тока.

Для этого к концам проверяемой обмотки подключают измерительный прибор, а на другую обмотку подают постоянное напряжение. Отклонение стрелки в момент замыкания ключа покажет полярность подключения обмотки. Такие действия производятся для каждой обмотки.

Также можно воспользоваться простым вольтметром при подключении переменного напряжения. Для этого на одну из обмоток подают пониженное переменное напряжение, а остальные две обмотки соединяют последовательно и подключают к вольтметру. Отсутствие или слишком малые показания говорят о том, что обмотки включены встречно.

Проверка

Если известен коэффициент трансформации, то при помощи вольтметра можно определить номер основной группы соединения. Для этой цели подают напряжение на концы А и а или x и y и измеряют напряжения на выводах В-в и С-с при соединении звездой или B-y и C-z при соединении треугольником. Для проверки используют следующие соотношения:

Для исключения повреждения оборудования, возникновения аварийных ситуаций и травмирования, все измерения следует производить при низком напряжении, не включая оборудование в основную сеть предприятия.

Примеры групповых соединений обмоток

Государственным стандартом предусмотрены только две группы соединения обмоток:

Жесткая стандартизация позволяет исключить аварии и повреждения в результате неправильных подключений. К тому же, для трансформаторов одинаковой мощности и коэффициента трансформации становится возможным параллельное включение устройств.

Остальное количество соединений используется крайне редко в отдельных случаях при невозможности использования стандартного варианта.

Тип подключения должен быть оговорен в сопроводительной документации и продублирован на шильдике устройства.

Ошибочные обозначения

Ошибочные включения возникают при несоблюдении правил подключения концов. Это происходит в результате неправильной намотки или неправильном обозначении. В результате при включении устройства в трехфазную сеть, обмотки, включенные встречно, компенсируют магнитные потоки друг у друга, поэтому через них начинает протекать ток, ограниченный лишь активным сопротивлением обмоточного провода, что равносильно короткому замыканию.

Чтобы исключить случаи неправильного включения, рекомендуется после ремонта оборудования или перед включением неизвестных устройств тщательно проверить фазировку каждой обмотки несколькими методами для исключения возможных ошибок.

Уменьшить вероятность ошибки поможет предварительный расчет напряжений для измерений по методу вольтметра. Полученные данные служат ориентировочными значениями, на которые нужно обращать внимание при проведении последующих измерений.

Источник

Оцените статью
Adblock
detector