Зачем нужен делитель напряжения в схеме усилителя

Как рассчитать делитель напряжения

В электронике и сложных электрических цепях часто требуется деление входящего напряжения. Для этих целей в схему вносится устройство, которое называется делитель. Статья даст описание, что такое делитель напряжения, для чего нужен этот элемент и где он применяется. Будут приведены различные варианты этого устройства, формулы, а так же способы расчета его параметров.

Определение

Делитель электрического напряжения — это схема из комбинации электронных компонентов, необходимая для разделения действующего входящего напряжения на части и для дальнейшей передачи этих частей к разным участкам схемы. Его используют очень часто в усилителях различного предназначения.

Делители напряжения могут быть построены с использованием различных элементов. В их роли могут выступать резисторы, конденсаторы, катушки индуктивности. Независимо из каких компонентов построено устройство, оно состоит из 2 основных частей:

  1. Верхнее плечо. Оно включает в себя участок с положительным значением и точкой подключения к следующему участку цепи.
  2. Нижнее плечо. Оно состоит из участка с нулем, является средней точкой цепи.

Оба плеча имеют строго последовательное соединение. Сумма напряжений их выходов равна общему входящему значению за вычетом небольшой величины рассеивания.

Делитель на резисторах

Чтобы понять, как работает делитель напряжения, необходимо рассмотреть этот простой элемент, построенный с использованием резисторов. Такое устройство может использоваться для деления переменного или постоянного тока. Простейший прибор состоит из 2 резисторов с последовательным соединением. Принцип работы будет следующим:

  1. На контакты «U» подается ток от источника, определенной величины.
  2. При условии, если резисторы равны по своему сопротивлению, на выходе «U1» и «U2» напряжение будет разделено пополам, а их сумма будет равна величине входящего напряжения.

Первоначальный расчет величины делается с использованием выражения: U=I·R.

В таких устройствах основную роль играет всем нам известный закон Ома. Согласно ему, должно сохраняться условие, при котором снижение напряжения имеет прямую пропорциональность величине сопротивления резисторов.

Принимая во внимание первый закон Кирхгофа, входящая величина напряжения будет равна величине токов, протекающих через резисторы. Ниже приведена схема резисторного делителя напряжения.

Определить величину падения напряжения на каждом резисторе можно по формулам, которые представлены ниже:

Отсюда можно сделать вывод о величине на обоих концах цепи:

Далее можно определить значение тока в цепи, используя выражение:

Значение напряжения на каждом резисторе вычисляется по отдельным формулам:

Если резистивный делитель напряжения состоит из резисторов с разными сопротивлениями, выражение поможет рассчитать величину для каждого элемента отдельно. Для примера можно выполнить следующее вычисление:

  1. U=50 В.
  2. Сопротивление резистора R1=5 кОм.
  3. Сопротивление резистора R2=5 кОм.
  4. Необходимо найти величину напряжения на выходах U1, U2.

Для начала необходимо найти силу тока, протекающего по данной цепи: I=50/(5000+5000)=0.005 А=5 мА.

Далее можно узнать величину падения напряжения для каждого резистора по формуле: U1=0.005×5000=25 вольт.

Так как оба резистора имеют одинаковое сопротивление, выходная величина «U2» также равна 25 В. Теперь проведем простой расчет с разными значениями сопротивлений.

Сначала найдем силу тока: I=50/(5000+3000)=0.00625 А=6.25 мА.

Далее отдельно вычислим значение падения напряжения:

Рассчитанная величина имеет коэффициент рассеивания, который равен 2 вольта, поэтому точные значения как в примере увидеть не получится.

Благодаря данным формулам можно рассчитать любой неизвестный параметр делителя, но также необходимо помнить, что входной ток делителя должен быть минимум в 10 раз больше тока нагрузки и меньше максимального тока источника. Например, с нагрузкой в 20 мА, входящий ток должен быть больше 200 мА и источник рассчитан на такой же ток или больше. Поэтому не часто можно встретить делитель в схемах с большой нагрузкой.

Резисторный делитель электрического напряжения страдает от потерь, связанных с рассеиванием. Это связано с тем, что резисторы при работе нагреваются и часть тока при этом просто преобразуется в тепловую энергию.

Делитель на конденсаторах

Делитель электрического напряжения на конденсаторах может использоваться только в цепях переменного тока. Конденсаторы используются, как емкостные реактивные сопротивления.

В делителях конденсаторного типа должно сохраняться правило зависимости сопротивления от частоты и емкости самих конденсаторов. Если используется ёмкостный делитель, то расчет сопротивления конденсатора делается с помощью формулы:

Данная формула состоит из следующих значений:

  1. Xc — реактивное сопротивление;
  2. π — число пи, которое равно 3.1415;
  3. f — частота тока, Гц;
  4. С — емкость, Фарад;
Читайте также:  Напряжение при зарядке форд транзит

Для подобных схем должно сохраняться условие: сопротивление всегда меньше емкости. Исходя из этого, можно сделать вывод, что чем больше ёмкостные характеристики конденсатора, тем меньше степень падения напряжения. Расчет выходящего напряжения с двумя конденсаторами можно сделать следующим образом:

Конденсаторный тип устройств более устойчивый, чем делитель напряжения на резисторах. При его работе прослеживается практически нулевая потеря при рассеивании. Причина этого эффекта в качестве и составе самого диэлектрика.

Дополнение схем

При создании схем УНЧ, инженерам необходимо занижение высоковольтного значения тока для обеспечения нормальной работы транзистора. Справится с этой задачей помогает делитель. Например, такое резисторное устройство используется для питания базового контакта транзистора. Таким образом создается обратная отрицательная связь по электрическому току, которая возникает благодаря наличию резистора R3. Схема усилителя каскада по схеме с ОЭ представлена на рисунке ниже.

При проектировании стабилизаторов используется стабилитрон, как часть балансного делителя. Такая схема помогает снизить нагрузку на устройство, значительно выровнять выходной ток. Стабилитрон, как и диод работает на пробой, если обратный ток достигает определенной величины.

Основное отличие заключается в том, что при повышении порогового значения, в стабилитроне не происходит теплового, электрического пробоя из-за линейной разности потенциалов.

Заключение

В статье была дана информация, как произвести расчет делителя напряжения, описаны разновидности этих устройств, формулы расчета. Зная, зачем используется делитель, можно применять это устройство для создания простых и сложных электронных схем с занижением напряжения до необходимых значений.

Видео по теме

Источник

Что такое делитель напряжения и где он используется

Потенциометр — это компактное устройство, состоящее из корпуса, внутри которого находится дорожка из графита и регулируемый скользящий контакт, который можно перемещать влево-вправо по дорожке поворотом ручки. Также имеется контактная площадка с тремя контактами.

Обратите внимание: сопротивление графитовой дорожки в потенциометре точно задано производителем.

При использовании устройства можно использовать только два контакта: средний и один из крайних. И в данном случае у нас получится переменный резистор. Однако если подключить два крайних контакта к источнику питания, то со среднего контакта мы сможем снимать поделенное напряжение.

Важный момент : каким бы ни было «штатное» сопротивление у потенциометра, делить напряжение он в любом случае будет одинаково.

Как устроен делитель напряжения

По сути, потенциометр — это то же самое, что и пара соединенных последовательно резистора, только поворотом ручки на потенциометре мы меняем сопротивление этих резисторов, а два обычных резистора, которые соединены между собой последовательно, «намертво» зафиксированы на одном сопротивлении.

Для примера: пара резисторов по 500 килоом (кОм) — это то же самое, что и потенциометр на 1 мегаом (МОм) с ручкой, установленной посередине.

Соответственно, два резистора по 2,5 кОм — это же самое, что и потенциометр на 5 кОм с ручкой, установленной по центру.

Таким образом, заменив резистор с одним сопротивлением на иной, меняется и поделенное напряжение. Чтобы точно рассчитать делитель, для удобства можно воспользоваться формулой, которая представлена на картинке ниже.

Если мы подключим любую нагрузку к делителю напряжения, то у нас получится параллельное соединение сопротивлений (сопротивление установленного резистора и сопротивление нагрузки).

Где можно использовать делитель напряжения

Чтобы мы не запитывали через делитель, напряжение всегда будет сильно падать. При этом резисторы еще и греются. Зачем вообще тогда нужен делитель?

Для подключения нагрузок он, конечно, никуда не годится. Проще просто ограничивать ток с помощью одного резистора или использовать стабилитрон.

Однако для сигнального тока делитель просто незаменим. Например, потенциометрами меняют громкость звуковых сигналов в усилителях. Громкость меняется как раз потому, что происходит деление напряжения звукового сигнала.

Также при помощи делителей напряжения можно создавать обратные связи в преобразователях и блоках питания.

Видео по теме

Источник

Делитель напряжения

Делитель напряжения, что это такое, для чего он нужен — рассмотрим этот вопрос. Но прежде поясню, почему такая странная тема. От вас часто приходят вопросы, которые изначально некорректны из-за не понимая самого процесса работы аудиоустройства. Я не являются специалистом в данной области и если вы видите неточности или неверные интерпретации — пожалуйста смело поправляйте в комментариях.

Многие слышали, что такое в аудио класс А, и насколько это хорошо или не очень, или класс B, что такое искажение типа «ступенька», зона отсечки, зона насыщения и прочие моменты, но если чуть копнуть глубже для ощущения, что оппонент действительно понимает о чем говорит, тут многие и начинают плавать.

Читайте также:  Iphone 7 intel напряжения модема

Усилитель Pioneer A-09 в классе А

Я, честно, хотел поговорить о более интересной теме, согласовании входного и выходного напряжений усилителя, что это такое, для чего нужно и как вообще работает. Но это планомерно подводило к тому, что тогда придется рассказать и о том, как вообще работает усилитель. А это в свою очередь привело бы к необходимости, до кучи, еще и объяснить неотъемлемую часть любой такой схемы — делитель напряжения. Поэтому я решил, что стоит объяснение начать именно с делителя, а потом дойдем и до всего остального.

Если рассмотреть схему любого усилителя, конкретно одного каскада, то вы узнаете, что для работы транзистора типа NPN нужно подать плюсовое напряжение на коллектор (что-то типа слива), а минусовое на эмиттер (дно). И у вас ничего не заработает, потому что пока вы не подадите на базу напряжение не менее 0,6v транзистор будет всегда закрыт. Т.е. база — это краник перекрывающий весь поток. Приложите вы к нему напряжение в 0,6 вольта — краник (база) откроется и ток потечет дальше, не приложите, краник будет закрыт, потока электронов не будет, транзистор работать не будет.

Вы конечно можете всегда подать на базу аналоговый сигнал (он же является напряжением), но транзистор будет открываться (работать), только когда напряжение сигнала будет равно или превышать 0,6 вольта, а что ниже — молчок.

Но на самом деле мы будем видеть только плюсовую полуволну, ибо минусовая будет всегда приходиться на зону напряжения менее 0,6 вольта при которой транзистор всегда будет закрыт. Поэтому эту зону всегда сдвигают вверх по напряжению, чтобы весь сигнал уместился в границах открытого транзистора.

Поясню. Допустим звуковой сигнал у нас имеет размах от -1 вольт до + 1 вольт, т.е. в сумме это 2 вольта.

Транзистор, пока у нас напряжение меньше 0,6 вольт вообще всегда закрыт (не работает), следовательно, нам нужно принципиально подать 0,6 вольт по умолчанию на него, чтобы он открылся. Но так уместится только положительная полуволна. Следовательно, так как отрицательная полуволна у нас начиналась от -1 вольта, то к 0,6 вольта мы добавим еще 1 вольт. Получиться, что на транзистор нам нужно подать 0,6+1=1,6 вольта напряжения. Тогда весь звуковой сигнал совокупного напряжения в 2 вольта будет колыхаться в пределах между 0,6 вольта и 2,6 вольта.

1,6 вольта — это точка смещения транзистора.

Описанная схема имеет смысл при использовании одного транзистора NPN или PNP, этим трюком, смещая точку открытия транзистора мы умещаем весь сигнал в рамках открытого транзистора.

Если же у нас комплементарная пара транзисторов NPN + PNP, то в этом нет необходимости, так как NPN будет усиливать свою полуволну, а PNP — свою полуволну с противоположным знаком напряжения.

Но и тут возникает проблема искажения типа «ступенька», поэтому мы так же начинаем использовать точку смещения, немного приоткрыв транзистор, но уже на 0,6 вольта, чтобы этой самой ступеньки не возникало.

Ключевое слово в описанных схемах — подать одно напряжение на коллектор + эмитер, и подать значительно меньшее напряжение 0,6-1,6 вольта на базу.

Неужели для этого придется использовать два трансформатора?

А теперь пусть гремят фанфары, мы подошли к сути темы.

Чтобы получить разные напряжения от одного источника питания необходим ДЕЛИТЕЛЬ НАПРЯЖЕНИЯ.

Давайте рассмотрим такую схему — у нас есть источник питания постоянного тока 12 вольт и резистор (нагрузка) на 1 кОМ.

Бытовой пример нагрузкой для усилителя являются акустические системы.

Вот так это выглядит на схеме. Источник, резистор и похожая на антенку вверх тормашками «земля».

Что произойдет с напряжением 12 вольт, если оно пройдет, через нагрузку (резистор) в 1 кОм? Напряжение уменьшиться? Ведь сопротивление мешает току. Току мешает, но ток измеряется в амперах, а не вольтах, а мы говорим о напряжении. Ток действительно взаимодействует с сопротивлением, и мы может узнать каково напряжение при определенном сопротивлении и силе тока по закону Ома, например:

но пока такой цели не ставиться.

Мы так же зная напряжение можем узнать и силу тока

Но что же с напряжением в схеме?

Подключим вольтметр в схему и посмотрим изменилось ли напряжение от того, что оно прошло через резистор (нагрузку) в 1 кОм.

Читайте также:  Как посмотреть напряжение блока питания компьютера средствами windows

Мы видим стрелочками движение тока, но так же видим и то, что вольтметр по прежнему показывает неизменное напряжение 12 вольт, как и было до резистора.

Кстати, легко проверить все значения, что нам показал симулятор everycircuit.

Прежде всего все расчеты ведутся в вольтах, омах, амперах и никак иначе. Поэтому если у вас миллиамперы, или милливольты, сначала переведите их в вольты и амперы для рассчета.

На схеме указано миллиамперы, т.е.

1 Ампер = 1000 миллиампер, следовательно

Но напряжение не изменилось.

Нужно разделить напряжение на два потока. Это можно сделать двумя резисторами.

Используем два резистора одинакового номинала 1 кОм.

Так как два резистора одного номинала, то напряжение разделилось ровно пополам.

Теперь если снять напряжение с боков нижнего резистора, то получим 6 вольт, а с верхнего — тоже 6 вольт.

Но вернемся к нашей задаче, подать на транзистор с одного источника строго 1,6 вольта, при том что источник питания у нас 12 вольт.

Еще один эксперимент, попробуем изменить номинал любого из резисторов, например нижнего в большую сторону. Увеличивая сопротивления резистора мы увеличиваем напряжение, ибо

напряжение пропорционально сопротивлению и обратно пропорционально силе тока.

Если переиначить поставив во главу угла силу тока, то вы получите определение из учебника.

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Другими словами — увеличив сопротивление резистором, мы уменьшим силу тока (как краник перекрываем немного для потока воды), но на этом отрезке зато увеличиваем напряжение.

Уменьшив значение одного из резисторов (в нашем случае нижнего) до 154 Ом мы получили требуемое напряжение 1,6 вольт — смотрим скриншот.

Не забываем, что резисторы бывают не всех номиналов, поэтому смотрим существующий ряд и берем ближайшее значение.

Но вы сейчас спросите, а как я получил значение в 154 Ом, а я и отвечаю — покрутил ползунком в симуляторе, пока не увидел нужное напряжение, как результат.

Так и было, но это не отменяет существование формул для расчета.

Рассчитывается следующим образом по формуле:

(пусть верхний резистор — это R1, а нижний — R2)

U делителя R1 = U напряжения источника * R2 / (R1+R2)

U делителя R1= 12 вольт * (1000 Ом (это 1 кОм)/(1000+154))= 12 * 1000/1154=10,398=10,4

Соответственно с R2 мы снимем 12-10,398 =1,6 вольта.

Все точно как в аптеке. Но есть еще один нюанс, где порылась собака. Резисторы способны пропускать только определенную силу тока, они при непосильной ноше начинают греться и могут сгореть ибо представляют собой, как вариант, просто накрученные проволочки (не всегда).

Поэтому для делителя напряжение мы должны выбрать не просто резистор какого-то номинала , а еще и с соответствующим значением по току, на 250мА или 1 А и тд.

Считается это следующим образом:

I (сила тока) = U источника / R1

I = 12v/ 1000 Om = 0.012 A или 12 мА.

т.е. достаточно резистора R1 в данном случае с параметрами 1кОм и не менее 12 мА.

Аналогично посчитайте для резистора R2.

Ниже я покажу схему усилителя.

Синим прямоугольником обведен делитель напряжения, который как раз и реализует точку смещения транзистора. Слева мы так же видим конденсатор С1, который отсекает постоянный ток, что приходит от делителя напряжения, от аналогового сигнала, но об этом поговорим в другой раз.

2 Комментарии

Отличная тема для обсуждения чего то по сути, о реальных электрических процессах. Но это никому не интересно. Все ходят обсуждать мифичиские процессы в каких нибудь кабелях, влиянием на звук конденсаторов определённого типа, о том что добавляет звуку пространственности, натуральности и т.д. и т.п. А субьективно поговорить можно хоть сколько угодно

Сайт не коммерческий, поэтому особо никак не пугает отсутствие хайпа в теме и соответственно не влияет на желание продолжать ту или иную тему, пока хочется поговорить и продолжить начатую тему, лишь думаю как проще озвучить ассоциации тех или иных процессов. Например что такое напряжение — за сухими формулировками, когда спрашиваешь человека что такое напряжение и просишь привести аналогии — это всё — отвечающий плывет. Ток елементарно объяснить, а напряжение — внятно и понятно? Если бы я хотел наплыва ради шума, то достаточно разместить любой материал про виниловые вертушки или лампу — начнется ажиотаж. Мне важнее собрать полезную информацию к которой сам могу позже возвращаться.

Оставить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Источник

Оцените статью
Adblock
detector