Зачем нужно постоянное напряжение

Основы электропитания. Зачем нужен сдвиг по фазе

В предыдущих частях цикла были рассмотрены общие моменты, касающиеся генерации и потребления электрической энергии, в том числе и особенностей ее передачи на большие расстояния. Теперь, когда известно, что при передаче больших мощностей без высокого напряжения не обойтись, настало время разобраться с одним из самых важных участков системы электроснабжения, так называемой «последней милей» – электропроводки с напряжением 230/400 B, ведь именно к этому сегменту подключены электрические розетки как дома, так и на производстве. Однако прежде чем приступить к изучению особенностей пользовательского сегмента системы электроснабжения, придется вначале рассмотреть несколько теоретических вопросов, поскольку без этого будет непонятно, почему было сделано именно так.

Чем отличается постоянное напряжение от переменного

Даже люди далекие от техники знают, что при установке батареек, например, в детскую игрушку или пульт дистанционного управления, нужно соблюдать полярность – неправильная установка этих элементов питания, в лучшем случае, приведет к тому, что устройство просто не будет работать, а в худшем – выведет из строя и оборудование, и элемент питания. Поэтому на корпусах батареек всегда указывают, какой из выводов имеет положительный (обозначается значком «+»), а какой – отрицательный (обозначается значком «–») потенциал (Рисунок 1). Более того, при создании подобных источников питания их терминалы обычно делают разными, чтобы предотвратить возможность ошибочного подключения. В неформальном общении эту защиту обычно называют «защитой от дурака». Примером тому является батарейка «Крона», терминалы которой позволяют надежно подключить ответную часть разъема батареи только в правильной полярности.

Рисунок 1. Указание полярности напряжения на источниках питания
постоянного тока. (Кадр из к/ф «Матрица»).

В то же время, в типовых электрических розетках два контакта, предназначенных для протекания тока, являются абсолютно одинаковыми, что позволяет вставлять вилку в розетку двумя способами. При этом ни о какой полярности подключения при использовании бытовых электроприборов речи не идет. Это связано с тем, что напряжение в электрических розетках постоянно меняет свою величину. Если взять, например, некоторый идеализированный вольтметр, способный мгновенно проводить измерения, и определить напряжение в розетке, то окажется, что в разные моменты времени оно будет принимать совершенное разные значения (Рисунок 2). То есть в определенное время полярность напряжения в розетке будет условно положительной, в другое – условно отрицательной, а в некоторые моменты напряжение будет вообще равно нулю.

Рисунок 2. Мгновенное значение напряжения в розетке в разные моменты времени.

В русскоязычной технической литературе напряжение, способное изменить свою полярность, называют «переменным», а напряжение, полярность которого не изменяется – «постоянным». Многим начинающим специалистам очень сложно усвоить эти понятия. У обычных людей слово «постоянный» прочно связано со словом «неизменный», а, поскольку в нашем мире все меняется, то и постоянного (неизменного) напряжения не может существовать. Более того, любое напряжение питания непостоянно, например, мы же выключаем иногда радиоприемник, следовательно, его напряжение питания исчезает (изменяется), поэтому многие мои студенты уверены, что радиоприемники питаются переменным (непостоянным) напряжением.

Более точно эти термины описаны в англоязычной технической литературе. Переменному напряжению соответствует термин «Alternating Voltage», который можно дословно перевести как «чередующееся» или «перемежающееся» напряжение – напряжение, полярность которого постоянно изменяется. Аналог «постоянного» напряжения – «Direct Voltage» – можно перевести как «направленное» напряжение – напряжение, которое не меняет своей полярности.

Однако изменить устоявшуюся терминологию, зафиксированную во многих нормативных документах, уже невозможно, поэтому придется привыкать, что переменное напряжение – это напряжение постоянно (!) меняющее свою полярность и величину, а постоянное напряжение может менять свою величину, но не может менять полярность, то есть тоже не является, в абсолютном смысле слова, постоянным.

Кстати, если постоянное напряжение периодически меняет свою величину, то его часто называют пульсирующим напряжением – напряжением, величина которого изменяется с определенной частотой при неизменной полярности. Различие между постоянным и пульсирующим напряжением весьма условно, часто одно и то же напряжение одни специалисты называют постоянным, а другие – пульсирующим. Однако в курсе «Основы электропитания» не предусмотрено столь глубокое изучение этого вопроса, поэтому дальше будем считать, что существует два вида напряжений: постоянное (не меняющее полярность) и переменное (полярность которого изменяется).

Ключевые особенности переменного напряжения

Итак, батарейка является источником постоянного напряжения, а электрическая розетка – переменного. Но почему для мощных энергосистем был выбран именно этот способ передачи энергии, ведь большинство электроприборов, в том числе и электронное оборудование, от источников переменного напряжения принципиально работать не могут и требуют дополнительного преобразования переменного напряжения в постоянное?

В самом начале коммерческого использования электричества постоянный ток был уже неплохо изучен, а переменный считался малопригодным для практического применения. Более того, переменный ток считали вредным и опасным для человека. Не последнюю роль в этом сыграло противостояние Томаса Эдисона и Джорджа Вестингауза, известное как «Война токов», начавшееся в 80-х годах 19-го века и закончившееся только в 2007 году полной победой переменного напряжения. Период «Войны токов» был не самым красивым в истории, и если бы не работы Никола Тесла, выполнившего огромный объем исследований свойств переменного тока, то неизвестно как бы вообще развивались электрические системы.

Читайте также:  1adjd smd стабилизатор напряжения 6pin

Основным недостатком постоянного напряжения является сложность изменения его величины. Даже на сегодняшний день простых и эффективных преобразователей постоянного напряжения не существует. До появления мощных полупроводниковых приборов изменить величину постоянного напряжения можно было только с помощью умформеров (система «мотор-генератор») (Рисунок 3) или вибропреобразователей. И те, и другие имели значительные массу, габариты и стоимость, требовали из-за наличия механических компонентов постоянного обслуживания и являлись источниками шума, вибрации и электромагнитных помех. Появление в 20-м веке мощных полупроводниковых транзисторов и диодов позволило значительно улучшить характеристики этого вида вторичных источников питания. Однако нужно понимать, что в этих схемах постоянное напряжение вначале преобразуется в переменное, а затем обратно в постоянное. До сих пор устройства, напрямую изменяющие величину постоянного напряжения, существуют только в виде абстрактных математических моделей [1].

Рисунок 3. Принцип преобразования постоянного напряжения с помощью системы
«мотор-генератор».

В предыдущей части цикла было показано, что для передачи электрической энергии на большие расстояния напряжение линий электропередач приходится многократно изменять – и повышать, и понижать. Но из-за того, что изменить величину постоянного напряжения не так просто, протяженность первых энергосистем не превышала 1.5 км – стоимость проводов и преобразователей для передачи энергии на большие расстояния была в то время очень высокой.

Рисунок 4. Устройство и принцип работы трансформатора.

А вот величину переменного напряжения можно легко изменить с помощью трансформаторов, имеющих очень простую конструкцию. Простейший трансформатор состоит из магнитопровода (его часто называют сердечником) и двух обмоток (Рисунок 4). Если одну из обмоток подключить к источнику напряжения, то в ней начнет протекать ток. Этот ток создаст в магнитопроводе магнитный поток Ф, который, согласно закону Фарадея, приведет к появлению на выводах всех обмоток ЭДС самоиндукции e:

(1)

где N – количество витков обмотки.

Обратите внимание, что ЭДС может возникнуть только при условии постоянного изменения магнитного потока Ф. Если подключить обмотку трансформатора к источнику постоянного напряжения, тогда магнитный поток изменяться не будет [2] (поскольку dФ/dt = 0), и ЭДС исчезнет [3].

А вот если подключить обмотку трансформатора к источнику переменного напряжения, тогда магнитное поле в магнитопроводе будет постоянно изменяться, и на других обмотках трансформатора, согласно формуле (1), возникнет ЭДС, форма которой будут соответствовать форме первичного напряжения. Таким образом, с помощью трансформатора можно энергетически связать две электрически изолированные цепи, передавая энергию через магнитное поле.

Важным свойством трансформатора является возможность простой регулировки выходного напряжения, поскольку для идеального (без потерь) устройства выполняется одно простое условие:

(2)

где V1, V2, N1, N2 – соответственно, напряжения и количество витков первой и второй обмоток.

Из формулы (2) видно, что напряжение на выходе трансформатора определяется соотношением числа витков обмоток N2/N1, называемым коэффициентом трансформации:

(3)

Если количество витков вторичной обмотки больше количества витков первичной (N2 > N1), тогда трансформатор будет повышать напряжение, а если наоборот (N2

Сноски

1) Существует ряд схем, например, делители напряжения, параметрические и компенсационные стабилизаторы, позволяющих изменить величину постоянного напряжения без дополнительных преобразований. Однако эти схемы принципиально не могут увеличить напряжение. Кроме того, их КПД напрямую зависит от соотношения входного и выходного напряжения и может оказаться недопустимо малым.

2) Математическая конструкция «dΦ/dt» означает «первая производная магнитного потока Φ по времени t». Она показывает, на какую величину (dΦ) изменился магнитный поток Φ за время (dt), при условии, что интервал наблюдения стремится к нулю (dt → 0). Если магнитный поток за время dt не изменился (dΦ = 0), то и первая производная будет равна нулю.

3) На самом деле, магнитные процессы в трансформаторе намного сложнее. В частности, магнитный поток Φ не может резко измениться. Поэтому сразу после подключения обмотки трансформатора к источнику постоянного напряжения магнитный поток будет нарастать в течение некоторого времени, что приведет к появлению ЭДС, однако рано или поздно она исчезнет.

4) Мерцание света при освещении вращающихся объектов может привести к стробоскопическому эффекту – когда кажется, что объект неподвижен, в то время как он вращается с большой скоростью. Это явление может быть как полезным (используется, например, в электропроигрывателях для установки скорости вращения диска), так и опасным для жизни (например, при освещении рабочих мест станков).

5) Это справедливо для мощностей больше 1 кВт. При меньших мощностях дешевле использовать однофазные системы.

Источник

Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Читайте также:  Количество теплоты электрического тока через напряжение

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Читайте также:  Компьютер перезагружается при скачке напряжения

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Что такое короткое замыкание по-простому?

Какие существуют виды источников электрического тока?

Способы вычисления потребления электроэнергии бытовыми приборами

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Что такое фазное и линейное напряжение?

Сравнение основных параметров светодиодных ламп и ламп накаливания, таблица соответствия мощности и светового потока

Источник

Оцените статью
Adblock
detector