Зачем при передаче электроэнергии используют понижающие трансформаторы

Что такое понижающий трансформатор, и зачем он нужен?

При передаче больших электромощностей на дальние расстояния используются высоковольтные линии электропередачи (ЛЭП) до 750 кВ и даже выше. Это делается по следующей причине.

Мощность, передаваемая по ЛЭП (S)равна произведению величины напряжения (U) и силы тока (I).

То есть, чем выше напряжение, тем большую мощность можно передать без увеличения тока. Это экономически обосновано, поскольку с увеличением тока растут потери в ЛЭП пропорционально квадрату тока.

Для снижения потерь требуется снижать сопротивление проводов, увеличивая их сечение, т.е. увеличивая расход цветного металла.

В быту или на производстве пользоваться таким напряжением невозможно, поэтому ближе к потребителю напряжение снижают до приемлемого уровня в 380/220 В. В опасных и особо опасных помещениях используют напряжение еще ниже: до 42В, 36В, 24В и 12В.

Делается это с помощью понижающих силовых трансформаторов. Не трансформаторов напряжения (ТН) как указал кто-то выше. Снижается, разумеется, напряжение, но трансформаторами напряжения (как и трансформаторами тока (ТТ)) мы называем специальные измерительные трансформаторы, предназначенные для подключения приборов и автоматики.

Почему в бытовых сетях повсеместно не используется безопасное напряжение в 12В? По той же причине, что и в высоковольтных линиях: снижение напряжения существенно увеличит материалоемкость и стоимость электросетей и электрооборудования, что станет заметно даже при небольших расстояниях в пределах одного здания.

Источник

Передача электроэнергии

Урок 17. Физика 11 класс

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Передача электроэнергии»

Уютнейшая вещь керосиновая лампа,

В данной теме подробно рассмотрим механизм передачи электроэнергии на большие расстояния.

Для начала повторим некоторые определения и понятия, которые понадобятся при изучении нового материала.

Трансформатором называется устройство, которое служит для преобразования силы и напряжения переменного тока при неизменной частоте.

Любой трансформатор характеризуется коэффициентом трансформации — отношением числа витков в первичной обмотке трансформатора, к числу витков в его вторичной обмотке.

В зависимости от значения коэффициента трансформации, различают повышающий и понижающий трансформаторы.

Если коэффициент трансформации меньше единицы, то трансформатор называется повышающим, а если больше единицы, то понижающим.

Электроэнергия вырабатывается на различных электростанциях: ТЭС, ГЭС и АЭС. Однако, как правило, все электростанции располагаются на значительном удалении от крупным населенных пунктов и городов, в местах, близких к источникам топливо- и гидроресурсов.

Известно что, законсервировать электроэнергию в больших масштабах, в настоящее время невозможно. Поэтому она должна быть потреблена практически сразу же после получения. В связи с этим, возникает необходимость в передаче электроэнергии на большие расстояния.

Для этого между станцией и конечными потребителями строятся линии электропередач.

Однако передача электроэнергии по линии электропередач связана с заметными потерями, так как при протекании электрического тока по проводам, он вызывает их нагревание.

Согласно закона Джоуля-Ленца количество теплоты, выделяемой проводником равно произведению квадрата силы тока, сопротивления и времени прохождения тока по проводнику. Таким образом, исходя из данного закона, энергия, расходуемая на нагрев проводов линии электропередач, будет определятся по формуле:

Читайте также:  Стандартные размеры сердечника трансформатора

где R — сопротивление линии электропередач, U — передаваемое напряжение, а P — мощность источника тока.

Исходя из данного закона, следует, что уменьшить потери в линии электропередач можно двумя способами: либо уменьшить сопротивление проводов, либо уменьшить силу тока в них.

Из курса физики 8 класса известно, что сопротивление зависит от геометрических свойств проводника, а также от материала, из которого он изготовлен. Отсюда видно, что сопротивление будет меньше, если уменьшить длину проводника. Однако длина определяется расстоянием, на которое передается электроэнергия. Значит, этот способ не подходит. Можно попытаться увеличить площадь поперечного сечения, но это приведет к перерасходу дорогостоящего цветного металла и возникновению трудностей, при закреплении проводов на столбах. Так что, и этот способ не выгоден. Значит, остается только второй способ — уменьшать силу тока в линии электропередач.

Но при данной мощности IU уменьшение силы тока возможно лишь при повышении передаваемого напряжения в линии электропередач. Поэтому, при передаче электроэнергии на большие расстояния необходимо пользоваться высоким напряжением и, чем длиннее линия передачи, тем более выгоднее использовать более высокое напряжение. Поэтому на крупных электростанциях устанавливают повышающие трансформаторы. Напомним, что трансформатор уменьшает силу тока во столько же раз, во сколько раз он увеличивает напряжение.

Так, электроэнергия Волжской ГЭС передается в Москву при напряжении 500 кВ, а от Саяно-Шушенской ГЭС — при напряжении 750 кВ. Однако на самих электростанциях генераторы переменного тока выстраивают на напряжения, не превышающие 16 — 20 кВ. Это, в первую очередь, связано с тем, что более высокое напряжение потребовало бы принятия сложных мер для изоляции обмоток и иных частей генераторов.

Однако, для непосредственного использования, электроэнергия таких больших напряжений не подходит. Вследствие чего, напряжение на концах линии электропередач нужно понизить. Это достигается с помощью понижающих трансформаторов.

При этом понижение напряжения и соответственно силы тока осуществляются в несколько этапов. На каждом из них напряжение становится все меньше и меньше, а территория, охватываемая электрической сетью, — все шире.

Обратите внимание на блок-схему линии передачи переменного тока. Как можно заметить, в ней присутствуют конденсаторы. Все дело в том, что трансформаторы обладают очень большим индуктивным сопротивлением, вследствие чего происходит сдвиг фаз между силой тока и напряжением. А конденсаторы помогают увеличить коэффициент мощности, тем самым свести к минимуму эту разность фаз.

В одной из прошлых тем говорилось, что долгое время в ученых кругах были разногласия по поводу использования постоянного и переменного тока. Эти разногласия были связаны в первую очередь с тем, что при передаче постоянного тока потери были бы меньше примерно в 1,5 раза. Однако до сих пор нет способов трансформации постоянного тока. Делается попытка промышленной передачи постоянного тока высокого напряжения на большие расстояния, но трансформируется все же переменный ток, который потом при высоком напряжении выпрямляется при помощи полупроводниковых приборов. После передачи постоянный ток обратно преобразуется в переменный в инверторах, который затем вновь трансформируется.

Тем не менее, трудности преобразований тока в такой линии передачи не позволяют пока широко использовать данный экономичный метод передачи электроэнергии.

Поэтому, в ближайшие годы, электроэнергия в жилые дома и для обеспечения нужд промышленности будет передаваться по линиям электропередач в виде переменного тока.

Что касается электрических станций ряда районов нашей страны, то они объединены высоковольтными линиями электропередачи, образуя общую электрическую сеть, к которой подключены потребители. Такое объединение называется энергосистемой. Она позволяет сгладить пиковые нагрузки потребления электроэнергии в вечерние и утренние часы.

Читайте также:  Телефонный трансформатор та 72м описание

Помимо этого, энергосистема обеспечивает бесперебойную подачу энергии потребителям вне зависимости от их месторасположения.

Передача электроэнергии на большие расстояния с малыми потерями – довольно таки сложная задача. Но использование повышающих и понижающих трансформаторов помогает успешно ее разрешить.

Источник

Что такое понижающий трансформатор?

Трансформаторы — это статические электрические устройства без движущихся частей, преобразующие электрическую энергию из одного значения напряжения и тока в другое. Частота электрического тока при этом остается постоянной.

Трансформаторы классифицируются по функциям: повышающие или понижающие. Повышающие трансформаторы увеличивают входящее напряжение, а понижающие трансформаторы уменьшают значение выходящего напряжение. Входящее напряжение называется первичным напряжением, а выходящее- вторичным. Также трансформатор может использоваться для гальванической развязки.

Как правило, повышающие трансформаторы располагаются на электростанциях, повышая напряжение, поступающее от электростанции в распределительные сети на большие расстояния. Понижающие трансформаторы, с другой стороны, уменьшают напряжение распределительных сетей, получаемых на уровне местного распределения. Поток на большие расстояния сначала понижается до уровня, приемлемого для местного распределения, а затем снова понижается в каждом потребительском узле (жилых домах и офисах).

Необходимость трансформаторов

При передаче электрической энергии, как на большие, так и на малые расстояния в системе энергоснабжения возникают собственные потери. Чем выше ток в линии, тем больше потери (при более низком напряжении, так как мощность передается одинакова). По этой причине для передачи электроэнергии на большие расстояния необходимо, чтобы у электричества было максимально высокое напряжение и максимально малый ток. Однако высокое напряжение небезопасно для потребителей и не подходит для большинства электроприборов. Бытовые электроприборы обычно рассчитаны на 220 В (110 В в США).

Трансформаторы преобразуют электроэнергию между высоким напряжением, малым током, необходимым для передачи на большие расстояния, и низким напряжением, большим током, необходимым для использования потребителями.

Кроме того, линии электропередачи обычно изготавливаются из меди, чтобы минимизировать потери, связанные с передачей. Медь имеет самое низкое электрическое сопротивление из всех проводящих материалов.

Применение понижающего трансформатора

Электростанции вырабатывают электроэнергию с напряжением 20 кВ, которое затем повышается до 330 кВ (а иногда и выше) для распределения на большие расстояния. При получении на местной распределительной станции напряжение снижается до 6, 10 кВ с помощью понижающего трансформатора. После чего, для распределения отдельным потребителям, используют другой понижающий трансформатор, который снижает напряжение до стандартных 380 В (220 В), пригодных для использования потребителями.

Бытовое напряжение в большинстве районов составляет 220 В. Однако не во всем мире используется напряжение 220 В в бытовых розетках. Например, в США напряжение в бытовой сети составляет от 110 В. Подключение устройства 220 В к розетке 110 В может привести к повреждению устройства. К счастью, есть недорогие трансформаторы-адаптеры (рисунок ниже), которые полностью решают эту проблему.

Работа трансформатора

Трансформаторы работают по принципу взаимной индукции. Изменяющееся магнитное поле в одном витке провода индуцирует электродвижущую силу (ЭДС) в соседнем витке провода, индуктивно связанном с первым. Проще говоря, трансформатор состоит из двух катушек из медной проволоки с высокой взаимной индуктивностью. Эти катушки электрически разделены, в то же время они имеют общую магнитную цепь (рисунок ниже).

В понижающем трансформаторе вторичная обмотка имеет меньшее количество витков, чем первичная, что позволяет снизить напряжение на выходе устройства.

Первичная обмотка, которая представляет собой первый набор катушек, подключается к источнику переменного напряжения. Вторичная обмотка подключается к нагрузке, распределяя электроэнергию от трансформатора.

Переменный ток, протекающий при первичном напряжении, создает переменный магнитный поток. Он индуцирует аналогичный ток во вторичной катушке, создавая вторичное напряжение. Здесь уменьшенное количество обмоток вторичной катушки эффективно снижает результирующее напряжение, следовательно, «понижая» напряжение до более низкого значения при сохранении постоянной частоты.

Читайте также:  Тп 115 к12 подключение трансформатора

Обратите внимание, что при уменьшении напряжения ток увеличивается для поддержки одинаковой частоты между первичной и вторичной обмотками. По этой причине вторичная обмотка в понижающих трансформаторах обычно имеет провод большего сечения, чем первичная. Поскольку ток в первичной обмотке низкий, для подключения первичной обмотки не требуется провод большого сечения. И наоборот, повышенный ток, протекающий через вторичную обмотку, требует увеличения сечения проводника. Если провод во вторичной катушке слишком тонкий, он плавится из-за перегрева, вызывая выход из строя трансформатора.

Изменение направления потока

Возможно использование как повышающих, так и понижающих трансформаторов в обратном подключении. При переключении первичной и вторичной обмоток направление электрического потока меняется на противоположное. Таким образом, повышающий трансформатор может выполнять функцию понижающего трансформатора и наоборот.

Производственные соображения

Трансформаторы — дорогой, но важный элемент системы электроснабжения. На приобретение трансформаторов требуются большие капитальные затраты, и ожидается, что они будут работать в течение всего прогнозируемого срока службы. В действительности, однако, трансформаторы обычно выходят из строя примерно на половине ожидаемого срока службы. Неправильно отремонтированные обмотки, устройства РПН и вводы часто являются первопричиной.

Однако виноваты не только неадекватные планы обслуживания. Трансформаторы часто не соответствуют предполагаемым условиям использования, что создает ненужную нагрузку на устройство. Несмотря на то, что трансформаторы полностью статичны и не имеют движущихся частей, сила тока, протекающего через обмотки, вызывает износ самих обмоток. То же самое и с переключателями ответвлений и втулками. Со временем целостность этих материалов нарушается, что приводит к легкому или критическому отказу.

Чтобы предотвратить преждевременный выход из строя, трансформаторы следует выбирать внимательно. После установки следует также осторожно производить ввод в эксплуатацию. Условия эксплуатации должны тщательно контролироваться, а планы технического обслуживания должны выполняться регулярно и тщательно. При наличии этих положений трансформаторы, вероятно, будут обеспечивать оптимальную производительность в течение всего прогнозируемого срока службы.

Сердечник

Кроме того, будьте благоразумны при выборе марки материала сердечника трансформатора. Хотя материалы более высокого качества, как правило, дороже, они обычно обеспечивают более длительный срок службы. Подберите материал в соответствии с нормальными условиями эксплуатации и желаемым сроком службы трансформатора.

Обмотки

Тщательно подбирайте тип металла, из которого изготовлены обмотки трансформатора. Здесь цель состоит в том, чтобы минимизировать сопротивление в проводах, одновременно увеличивая электрическую проводимость. В этом случае лучше всего подходит медь, хотя обычно она дороже алюминия, который является альтернативой.

В долгосрочной перспективе медь, как правило, является наиболее экономичным вариантом, поскольку она обеспечивает меньшее сопротивление электрическому току, чем альтернативные материалы. Это уменьшенное сопротивление приводит к меньшим потерям электроэнергии, увеличивая долгосрочную эффективность оборудования. Дополнительным преимуществом является снижение тепловыделения в системе, поскольку электрическое сопротивление приводит к выделению тепла при использовании альтернативных материалов.

Важно понимать физическое расположение обмоток. Такое расположение должно соответствовать ожидаемым условиям эксплуатации.

Изоляция

Изоляция имеет решающее значение для правильного функционирования трансформатора, а также для безопасности персонала на объекте. Совместите это с ожидаемыми условиями эксплуатации, обеспечив оптимальный выбор изоляционного материала и конфигурации.

Вывод

Трансформаторы необходимы для эффективного функционирования энергосистемы. Эти устройства позволяют преобразовывать электрическую мощность в правильное соотношение напряжения к току как для передачи на большие расстояния, так и для местного распределения. Из-за их стоимости трансформатор следует выбирать внимательно. Правильная эксплуатация и соответствующее техническое обслуживание продлевают срок службы трансформатора.

Источник

Оцените статью
Adblock
detector