Замыкание пластин магнитопровода трансформатора

Неисправности электрооборудования и способы их устранения — Неисправности силовых трансформаторов и способы их устранения

Содержание материала

НЕИСПРАВНОСТИ ТРАНСФОРМАТОРОВ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Неисправности магнитопровода

В процессе эксплуатации трансформатора межлистовая изоляция магнитопровода стареет, что может вызвать замыкание между листами магнитопровода. При межлистовых замыканиях увеличиваются потери холостого хода трансформатора, ухудшается качество масла: понижается пробивное напряжение, резко понижается температура вспышки, увеличивается кислотность.
Особенно тяжелая авария магнитопровода — пожар, который может произойти от возникновения замкнутых контуров в стали магнитопровода при замыкании стяжных шпилек активной стали каким-либо металлическим предметом, гаечным ключом например. При пожаре в стали магнитопровода резко увеличиваются потери холостого хода трансформатора, масло становится темного цвета с резким неприятным запахом, сильно ухудшаются диэлектрические свойства масла. При пожаре в стали магнитопровода обыкновенно срабатывает газовая защита трансформатора. Место повреждения можно определить после вскрытия трансформатора и проведения соответствующего опыта. В отдельных случаях трансформатор сильно гудит из-за ослабления прессовки магнитопровода.
Ремонт магнитопровода сводится в основном к ликвидации межлистовых замыканий путем разборки магнитопровода с последующей чисткой, покраской и сушкой листов.

Витковое замыкание в обмотках

Витковое замыкание может возникнуть от естественного старения изоляции при длительной эксплуатации трансформатора, перегрузок, но чаще всего витковое замыкание — следствие динамических нагрузок, воспринимаемых обмоткой при коротких замыканиях со вторичной стороны трансформатора. При витковом замыкании замкнутые накоротко витки чрезмерно перегреваются, из трансформатора выделяется горючий газ сероватого цвета, слышится бульканье масла. Токи в фазах трансформатора отличаются один от другого при симметричной нагрузке. Если трансформатор не будет отключен действием газовой или другой защиты, то он может полностью выйти из строя. Если витковое замыкание произошло в доступном месте — близко к выводным концам, то иногда можно смотать часть обмотки, имеющей витковые замыкания. Обязательно удаляют такое же количество витков и из двух других фаз. Вместо удаленной части обмотки ставится соответствующая изоляция. Исключенные витки иногда целесообразно пополнить путем перестановки анцапфного переключателя на плюсовое положение.

Междуфазное замыкание

Междуфазное замыкание может произойти при ослабленной расклиновке в момент короткого замыкания со вторичной стороны трансформатора. При задержке работы защит трансформатора (в момент междуфазного замыкания должны работать газовая, максимальная и дифференциальная защиты), его обмотки выходят из строя вследствие сильного нагрева и динамических усилий от токов короткого замыкания. Неисправность устраняют путем замены вышедшей из строя обмотки — новой или путем перемотки обмотки. Обычно после междуфазного замыкания масло в трансформаторе меняют.

Обрыв в обмотке трансформатора

Наиболее вероятен обрыв в обмотке высокого напряжения. Если обрыв произошел во время работы трансформатора, то образуется электрическая дуга, что может привести к междуфазному замыканию.

Пробой обмотки на корпус

Пробой происходит вследствие неудовлетворительного состояния главной изоляции трансформатора — изоляции обмотки высокого напряжения от магнитопровода и обмотки низкого напряжения. При пробое на корпус б сельскохозяйственных трансформаторах с изолированной нейтралью на стороне высокого напряжения либо будет срабатывать газовая защита, либо пробой можно обнаружить по приборам контроля изоляции. В результате пробоя на корпус все токоприемники, подключенные к сети обмотки высокого напряжения, соединенной с корпусом— землей, попадают под высокое напряжение по отношению к земле.

Старение трансформаторного масла

При длительных перегрузках трансформатора масло стареет сравнительно быстро, происходит крекинг масла — разложение его на фракции. Масло темнеет, приобретает характерный резкий запах, падает температура вспышки масла, ухудшаются его диэлектрические свойства. Кроме того, в масле появляется вода из атмосферы, всасываемая через консерватор — расширитель. Совершенно необходимо систематически и своевременно контролировать качество масла, так как ухудшение качества масла может привести к тяжелой аварии трансформатора.

Обрыв заземления магнитопровода

Обрыв заземления магнитопровода обыкновенно происходит при транспортировках трансформатора. Эта неисправность представляет опасность для изоляции обмоток при перенапряжениях. Неисправность проявляется так: при повышенных напряжениях внутри трансформатора происходят разряды — слышны потрескивания.

Неисправности переключателей анцапф

В обыкновенных силовых трансформаторах переключатель можно ставить в новое положение только после отключения трансформатора от питающей сети. Несоблюдение этого условия приводит к выходу анцапфного переключателя из строя. В некоторых случаях вместе с переключателем повреждается часть обмотки трансформатора.
При нормальном пользовании анцапфным переключателем основная его неисправность — ослабление его контактной системы, что может повлечь обрыв в цепи обмотки в месте слабого контакта переключателя. Во время ремонта трансформатора без вскрытия его активной части (магнитопровода с обмотками) качество контактной системы переключателя должно быть проверено соответствующими измерениями, а при вскрытии активной части необходимо тщательно осмотреть переключатель. Ремонт переключателя сводится к чистке или замене контактов и замене пружин.

Читайте также:  Измерительный трансформатор тока 220кв

Отсутствие герметичности трансформатора

Исправный трансформатор не должен иметь подтеков масла. При повреждении отдельных уплотнений в трансформаторе появляются подтеки. Причины: повреждены пробковые или резиновые (резина маслоупорная) прокладки между баком и крышкой трансформатора; между крышкой и изоляторами; течь масло может и через изоляторы с плохой армировкой или плохой заделкой головок, через трещины в баке и радиаторах.
Устранение неисправности. Бак, крышка, радиаторы, изоляторы должны быть тщательно очищены от грязи. Затем из трансформатора сливают часть масла, чтобы расширитель остался сухим. Расширитель демонтируют и на его место завинчивают трубу с воронкой, диаметр трубы I», а ее длина с воронкой около м. Перед заливкой масла в трубу необходимо закрыть все отверстия, сообщающиеся с атмосферой. Заполнив трубу на 230—240 см маслом, наблюдают за всеми уплотнениями трансформатора, его арматурой и сварными соединениями бака. Испытание трансформатора на герметичность проводится в течение часа. Если обнаружат течь бака, его нужно тщательно промыть маслом и насухо протереть. После этого могут быть заварены или зачеканены места подтеков масла. Перед заваркой или чеканкой место подтека должно быть тщательно зачищено до металла. При заварке необходимо соблюдать правила техники безопасности. Большинство уплотнений трансформатора— прокладки из маслоупорной резины или пробки. Вышедшие из строя прокладки заменяют новыми. Если сливной кран течет, его ремонтируют или заменяют новым. Расширитель промывают маслом, сушат, а при наличии подтеков заваривают. Если металл расширителя имеет глубокую ржавчину, то делают новый расширитель.

Неисправности изоляторов

Если изоляторы имеют трещины, загрязнены с внешней или внутренней стороны, имеют плохой контакт между выводом от обмотки и проходной шпилькой или плохой контакт между питающей шиной и шпилькой, то все эти неисправности приводят к междуфазным коротким замыканиям на выводах и к пробоям на корпус. Изоляторы с трещинами и сколами заменяют исправными. Если изолятор течет через армировку, его можно переармировать. Для этого паяльной лампой нагревают фланец изолятора и обстукивают его молотком. Температура нагрева порядка 130-г-140°С. Некоторые замазки можно отделить при помощи электролита свинцовых аккумуляторов. После очистки от старой замазки изолятор и фланец должны быть тщательно промыты, высушены и зачищены стальными щетками. Для армировки изоляторов применяют следующие замазки. Глёто-глицериновая — 3 весовые части свинцового глёта и 1 часть химически чистого глицерина. Хорошо замешанную замазку делают за 10 мин до армирования, твердеет она через 40—45 мин после приготовления. Время полного отвердевания 204-25 ч. Портландцементная — 1 часть цемента марки 400 или 500; 1,5 части кварцевого песка и 0,5 части воды. Замазку делают за 1 ч до использования, затвердеет через двое суток, а полностью через 10-М 5 суток.

Источник

Магнитопровод трансформатора

Магнитопровод представляет собой магнитную систему трансформатора, по которой замыкается основной магнитный поток. Одновременно магнитопровод служит основой для установки и крепления обмоток, отводов, переключателей и других деталей активной части трансформатора.

Магнитопровод собирают из отдельных тонких пластин электротехнической стали, изолированных друг от друга пленкой специального жаростойкого покрытия или лака. Жаростойкое покрытие обычно наносят непосредственно на металлургическом заводе, изготовляющем сталь; пленку лака — на трансформаторном заводе после резки (штамповки) пластин.

Магнитопроводы выполняют двух типов: стержневого и броневого.

В магнитопроводе стержневого типа (рисунок 1, а) вертикальные стержни 1 имеют ступенчатое сечение, вписывающееся в круг. На них расположены обмотки 2 цилиндрической формы. Части магнитопровода, не имеющие обмоток и служащие для образования замкнутой цепи, называют ярмами.

В броневом магнитопроводе (рисунок 1, б) стержни расположены горизонтально и имеют прямоугольное поперечное сечение. Соответственно этому и обмотки такого магнитопровода имеют прямоугольную форму. Из-за очень сложной технологии изготовления броневую конструкцию применяют только для некоторых типов специальных трансформаторов; все силовые трансформаторы отечественного производства имеют стержневую конструкцию.

а — стержневая; б – броневая; 1 — стержень; 2 – обмотки; 3 — ярмо
Рисунок 1 — Основные типы конструкций магнитопроводов

По способу соединения стержней с ярмами различают стыковую и шихтованную конструкции стержневого магнитопровода.

При стыковой конструкции стержни и ярма собирают раздельно, насаживают обмотки на стержни, а затем сверху приставляют верхнее ярмо. Чтобы избежать замыкания пластин, между стыкующимися частями магнитопровода помещают прокладки из электрокартона. После установки верхнего ярма всю конструкцию прессуют и стягивают вертикальными шпильками.

Стыковая конструкция существенно облегчает сборку, так как для насадки обмоток достаточно снять верхнее ярмо. Однако необходимость в громоздких стяжных устройствах, а также в механической обработке стыкующихся поверхностей стержней и ярм (что необходимо для уменьшения магнитного сопротивления) привела к тому, что для силовых трансформаторов стыковую конструкцию магнитопроводов не применяют. Чаще всего ее используют для токоограничивающих или шунтирующих реакторов.

Читайте также:  Разделение магнитных потоков в трансформаторе

При шихтованной конструкции стержни и ярма собирают в переплет, т. е. разбивают по толщине на слои (обычно по два или три листа), составленные из отдельных пластин так, чтобы в каждом слое часть пластин стержня заходила в ярмо. При этом пластины одного слоя перекрывают стыки пластин смежного слоя. Преимуществом шихтованной конструкции перед стыковой являются меньшая масса и большая механическая прочность, небольшие зазоры в местах стыков и меньший ток холостого хода трансформаторов.

Однако при шихтованной конструкции усложняется сборка трансформатора: для насадки на стержни обмоток приходится сначала расшихтовать верхнее ярмо по отдельным слоям, а затем после насадки обмоток вновь зашихтовать. Эта работа трудоемка и очень ответственна, так как при недостаточно тщательном ее выполнении могут резко ухудшиться характеристики трансформатора.

Если после зашихтовки окажутся увеличенными зазоры между пластинами ярма и стержня, это ухудшит условия для прохождения магнитного потока и увеличит ток холостого хода трансформатора. Если по каким-либо причинам в ярмо будет уложено меньше пластин, чем это необходимо, уменьшится его поперечное сечение, следовательно, возрастет плотность магнитных силовых линий (магнитная индукция), увеличатся потери и ток холостого хода. Если при расшихтовке или шихтовке ярма будут небрежно обращаться с пластинами (удары, механические повреждения, порча изоляции), то это также явится причиной ухудшения экономических характеристик трансформатора.

В последнее время в конструкции стержневых магнитопроводов внесены значительные изменения. Изменилась форма пластин, из которых собирается магнитопровод: вместо прямоугольных пластин часто применяют пластины, одна или две узкие стороны которых срезаны под углом (чаще всего 45°). «Косой стык» в конструкции магнитопроводов позволяет заметно уменьшить потери холостого хода за счет некоторого усложнения в изготовлении. На рисунке 2, а, б показаны пластины с косым стыком и магнитопровод однофазного трансформатора с косым стыком пластин после расшихтовки верхнего ярма, а на рисунке 3 — часть верхнего ярма (в процессе шихтовки) над крайним и средним стержнями трехфазного трансформатора мощностью 1000 кВА.

1 — магнитопровод; 2 — ярмовая балка; 3 — нижнее ярмо
Рисунок 2 — Пластины магнитопровода с косым стыком (а) и магнитопровод однофазного трансформатора с косым стыком пластин после расшихтовки верхнего ярма (б)

а — над крайним стержнем; б — над средним стержнем; 1 — пластины крайнего стержня; 2 — верхнее ярмо; 3 — прессующее кольцо; 4 — пластины среднего стержня; 5 — устройство для подъема; 6 — обмотка ВН
Рисунок 3 — Магнитопровод трехфазного трансформатора с косым стыком пластин

Обмотки стержневого магнитопровода имеют в горизонтальном сечении форму окружности. Для лучшего использования площади круга поперечное сечение стержней магнитопровода также стремятся приблизить к кругу. Однако круглое сечение стержней потребовало бы большого числа различных по ширине пластин стали, что значительно усложнило бы технологию изготовления. Поэтому сечение стержней делают многоступенчатым.

Ярма магнитопровода трансформаторов I—III габаритов, выпускавшихся отечественными заводами еще совсем недавно, имели прямоугольную или Т-образную форму со ступенькой, обращенной в сторону «окна» магнитопровода. В новых конструкциях форма сечения ярма (для лучшего распределения магнитного потока) повторяет форму сечения стержня, да и сами стержни стали «полнее»: количество ступеней (пакетов из пластин разной ширины) увеличилось, следовательно, увеличилось и сечение активной стали в площади круга. На рисунке 4 показаны сечения Т-образного и многоступенчатого ярм магнитопроводов трансформаторов I— III габаритов.

а — Т-образного, б — многоступенчатого; 1 — верхнее ярмо, 2 — верхняя ярмовая балка, 3 — нижняя ярмовая балка, 4 — нижнее ярмо
Рисунок 4 — Форма сечения ярм магнитопроводов трансформаторов I—III габаритов

Готовый магнитопровод должен обладать достаточной жесткостью. Неравномерная и недостаточная опрессовка, недобор или перебор пластин в одном из стержней или в ярме вызывают повышенную вибрацию, что может привести к механическому разрушению деталей крепления магнитопровода. Повышенная вибрация сопровождается шумом. Поэтому при сборке магнитопровода пластины стержней и ярм должны быть опрессованы и скреплены как бы в одно целое.

Существуют различные способы прессовки. В трансформаторах небольшой мощности стержни прессуют деревянными планками, вбиваемыми при сборке активной части трансформатора между цилиндром внутренней обмотки и стержнем магнитопровода. Эти планки расклинивают стержни относительно обмоток и опрессовывают их.

Для прессовки магнитопроводов более мощных трансформаторов широко применяют стяжку стержней металлическими шпильками.

До последнего времени в трансформаторостроении широко применялись конструкции магнитопроводов с отверстиями в активной стали. Такие магнитопроводы стягивались горизонтальными шпильками, проходящими в отверстиях, выштампованных в каждой пластине. Шпильки приходилось надежно изолировать от стали во избежание замыкания пластин, которое может вызвать увеличение вихревых токов, местный нагрев и «пожар в стали».

Однако конструкции магнитопроводов с отверстиями в активной стали стержней и ярм имеют существенные недостатки. Отверстия штампуются на специальных прессах (эта одна из наиболее трудоемких операций при изготовлении магнитопроводов); вокруг каждого отверстия появляется зона механически деформированной стали (для снятия возникшего наклепа необходим отжиг пластин); отверстия уменьшают сечение и вызывают местное увеличение потерь холостого хода. Наконец, даже самая надежная изоляция шпилек, прессующих стержни и ярма магнитопровода, может с течением времени нарушиться с тяжелыми последствиями для трансформатора. Поэтому в последнее время получили широкое распространение конструкции так называемых бесшпилечных магнитопроводов. Существует довольно много конструкций бесшпилечных магнитопроводов, отличающихся способом прессовки стержней и ярм. Так, у трансформаторов мощностью 250—630 кВА стержни затягивают временными струбцинами еще в горизонтальном положении сразу после сборки. При насадке обмоток (как правило, намотанных на бумажно-бакелитовом цилиндре) струбцины снимают, а между цилиндром и магнитопроводом устанавливают деревянные планки и клинья, жестко прессующие пластины стержня.

Читайте также:  Скупка трансформаторов в челябинске

У трансформаторов большей мощности стержни прессуют стальными бандажами или бандажами из стеклоленты. Чтобы избежать образования замкнутого витка, стальные бандажи выполняют с изолирующей пряжкой. Бандажи из стеклоленты наматывают с помощью специального устройства, позволяющего равномерно укладывать ленту с необходимым для запрессовки стержня натягом.

Для прессовки ярм используют или вынесенные за крайние стержни шпильки, стягивающие ярмовые балки (балки при этом делают механически очень прочными), или стальные полубандажи, охватывающие верхние и нижние ярма. В некоторых конструкциях вместо полубандажей ставят стальные шпильки, требующие, однако, некоторого увеличения окна магнитопровода.

На рисунке 5 показано ярмо магнитопровода, запрессованное стальными полубандажами. Полубандаж представляет собой стальную ленту 1 шириной 40—60 мм и толщиной 4—6 мм (обычно берут две ленты толщиной по 2—З мм). К концам ленты приваривают стальные шпильки 2, пропускаемые через пластины 3 из прочного изоляционного материала (чаще всего для этих целей применяют стеклопластики). При затяжке гаек 4, наворачиваемых на шпильки, создается необходимое усилие запрессовки ярма. Чтобы избежать замыкания пластин стали ярма полубандажом, под него подкладывают коробочку из электрокартона толщиной 2—3 мм.

1 — стальная лента, 2 – шпилька, 3 — пластина из стеклопластика, 4 — прессующая гайка
Рисунок 5 — Ярмо магнитопровода, запрессованное полубандажами

Однако одни только полубандажи не могут создать усилий, достаточных для прессовки ярма. Для затяжки ярм обязательно применяют специальные стяжные устройства по торцам магнитопровода, вынесенные за активную сталь. В трансформаторах мощностью 4000—6300 кВА это могут быть просто стальные шпильки, изолированные от возможного замыкания со стержнем бумажно-бакелитовыми трубками, в трансформаторах большей мощности — специальные «коробки», упирающиеся в активную сталь крайних стержней магнитопровода.

Для многих трансформаторов применяют прессовку обмоток нажимными кольцами. Дело в том, что в процессе работы происходит постепенная усушка электрокартонных деталей обмоток, особенно если обмотки и активная часть трансформатора были недостаточно просушены при изготовлении. Такая усушка приводит к уменьшению высоты и ослаблению запрессовки обмоток, что резко снижает динамическую прочность трансформатора при коротких замыканиях и может стать причиной его разрушения.

Нажимные кольца позволяют создать необходимые усилия запрессовки и, что особенно важно, подпрессовать обмотки, если при ревизии обнаружится ослабление их осевого крепления. До последнего времени нажимные кольца делали из стали. В настоящее время их часто выполняют из различных пластических материалов, главным образом стеклопластиков. На рисунке 6 показаны прессовка обмоток нажимными кольцами и конструкция прессующего устройства.

1 — верхнее ярмо, 2 — обмотка, 3 — прессующее кольцо, 4 — нажимной винт, 5 — ярмовая балка
Рисунок 6 — Прессовка обмоток нажимными кольцами и конструкция прессующего устройства

Во время работы трансформатора между его обмотками и заземленными частями (например, баком) существует электрическое поле. Все металлические части трансформатора, находящиеся в этом поле, заряжаются, т. е. приобретают некоторый потенциал. Между заряженными деталями и заземленным баком возникают разности потенциалов. Несмотря на малую величину, они могут оказаться достаточными для пробоя небольших изоляционных промежутков, разделяющих металлические части. Пробои нежелательны, так как они ведут к разложению и порче масла и всегда сопровождаются характерным треском, что вызывает сомнения в исправности изоляции трансформатора. Поэтому магнитопровод и детали его крепления обязательно заземляют, т. е. придают им всем одинаковый потенциал — потенциал бака (земли); возникающие при этом электрические заряды по заземлениям «стекают» с металлических деталей трансформатора в землю.

Заземляют ярмовые балки, все металлические крепления и детали, за исключением горизонтальных стяжных шпилек, потенциал которых всегда близок к потенциалу стали магнитопровода. Заземление осуществляют с помощью медных лент, вставляемых между пластинами стали магнитопровода и закрепляемых другими концами на ярмовой балке. Верхнюю и нижнюю балки связывают вертикальными стяжными шпильками, а с заземленным баком трансформатора — подъемной шпилькой.

Возможны различные схемы заземления металлических деталей: они зависят от конструкции магнитопровода, крепления активной части в баке, связи между отдельными деталями. В любом случае выполнение указаний о заземлении отдельных элементов конструкции трансформатора является обязательным.

Источник

Оцените статью
Adblock
detector