Защита земли от напряжения

Земляная защита (ЗЗ)

Земляная защита

Земляная защита (ЗЗ) предназначена для защиты ВЛ в сетях с заземленной нейтралью от КЗ на землю. Полное правильное название защиты — токовая направленная защита нулевой последовательности (ТНЗНП).

ЗЗ реагирует на ток нулевой последовательности защищаемой ВЛ: если величина тока нулевой последовательности превышает уставку, ЗЗ срабатывает и отключает защищаемую ВЛ. То есть, по принципу действия ЗЗ является максимальной токовой защитой, включенной не на полные фазные токи, а на ток нулевой последовательности.

Реле тока ЗЗ включаются в обратный провод трансформаторов тока (ТТ), соединенных в полную звезду (рис. 2.2.1). Ток в реле ЗЗ равен сумме токов трех фаз и равен утроенному току нулевой последовательности:

В нормальном режиме работы ток в реле тока ЗЗ равен нулю, так как сумма токов трех фаз в трехфазном симметричном режиме работы равна нулю. Ток в реле тока ЗЗ может появиться только в четырех случаях:

1. При КЗ на землю (однофазных и двухфазных). При однофазных КЗ ток в ЗЗ равен току КЗ. При КЗ на землю 33 срабатывает правильно — она для этого и предназначена.

2. При замыкании двух фаз двух соседних ВЛ. С точки зрения питающей энергосистемы это двухфазное КЗ, и ЗЗ энергосистемы при этом не работают. Но в ЗЗ обеих поврежденных ВЛ ток 3I0 равен току КЗ и обе защиты могут сработать. Работа ЗЗ при этом считается правильной.

3. При обрывах фаз в сети. При этом ток в защите примерно равен току нагрузки и ЗЗ может сработать (если ток нагрузки больше тока срабатывания защиты), а может, и нет. В любом случае поведение защиты считается правильным.

4. При неисправности токовых цепей: обрыв или закорачивание одной или двух фаз токовых цепей. При этом ток в защите равен току нагрузки и ЗЗ может сработать ложно (если ток нагрузки больше тока срабатывания защиты), без повреждения в сети.

Во всех остальных режимах: в нормальном режиме, при качаниях, при асинхронном ходе, при междуфазных КЗ без земли ток 3I0 отсутствует и ЗЗ принципиально не работает.

ЗЗ — защита с относительной селективностью. Для обеспечения селективности выдержки времени ЗЗ в сети выбираются по ступенчатому принципу со ступенью селективности 0,4-0,5 сек.

Источник

Виды защит от однофазных замыканий на землю (ОЗЗ)

Факторы, влияющие на работы защит от ОЗЗ

Проблема массового применения защит от ОЗЗ состоит в том, что большинство используемых на данный момент устройств показывают низкую эффективность из-за частых отказов в срабатывании, ложных и излишних срабатываний. Низкая эффективность данных защит связана со сложностью и многообразием факторов, связанных с протеканием процессов, которые используются для защит от замыканий на землю. Основные факторы, влияющие на работу защиты от замыканий на землю, это:

1. Вид замыкания (металлическая связь, замыкание через переходное сопротивление, замыкание через дугу);

2. Устойчивость замыкания (устойчивые и неустойчивые: прерывистое замыкание и замыкание через перемежающуюся дугу);

3. Наличие небалансов в сети;

4. Переходные процессы схожие с процессами при ОЗЗ (включение линии, наводка от других ЛЭП при ОЗЗ на них и т.д.).

Рассмотрим различные варианты защиты от ОЗЗ по мере повышения их сложности и эффективности. В основном можно разделить защиты от ОЗЗ на два типа — индивидуальные и централизованные защиты.

Индивидуальные защиты наиболее просты, но при этом имеют высокий процент ложных срабатываний.

1.Токовая защита нулевой последовательности.

Наиболее простой и распространенной из защит от ОЗЗ является токовая индивидуальная защита нулевой последовательности, реагирующая на ток нулевой последовательности (далее НП) рабочей частоты. Однако для обеспечения условия селективности действия эти защиты должны отстраиваться от собственного ёмкостного тока фидера, что с учетом бросков ёмкостного тока в момент замыкания ограничивает чувствительность защиты.

В целом индивидуальные ненаправленные токовые защиты от ОЗЗ могут быть эффективны лишь в установках, с большим количеством подключенных к секции присоединений, каждое из которых имеет малый емкостный ток. Тогда отстройка от этого тока не приведет к недопустимому снижению чувствительности. Этот случай характерен, например, для цехов предприятий с большим количеством маломощных электродвигателей, включенных через короткие кабели. Однако если в такой сети установлен дугогасящий реактор, то защита, построенная на данном принципе не способна обеспечить устойчивость функционирования, так как емкостной ток 50 Гц поврежденного присоединения будет скомпенсирован.

Читайте также:  110кв это фазное или линейное напряжение

2.Токовая направленная защита нулевой последовательности .

Защиты, использующие только один сигнал тока НП, несмотря на свою простоту, имеют существенные недостатки, которые будут приводить к их неселективным действиям. В ходе дальнейшего усовершенствования таких защит стали использовать два сигнала – ток и напряжение НП для определения направления. Большое число направленных защит реагируют на направление мощности нулевой последовательности в установившемся режиме. Чувствительность таких защит выше, чем ненаправленных, так как их ток срабатывания отстраивается только от тока небаланса в максимальном рабочем режиме, а отстройка защиты от собственного ёмкостного тока линии не требуется, поскольку от этого тока она отстроена по направлению. Общим недостатком защит такого типа являются их неселективные действия или отказ в срабатывании при перемежающихся дуговых ОЗЗ.

3.Защита по активной мощности нулевой последовательности.

Другим методом определения поврежденного присоединения с использованием сигналов тока и напряжения НП является расчет активной мощности нулевой последовательности в установившемся режиме. Защиты, реализованные на этом принципе, обладают более высокой устойчивостью функционирования в режимах с перемежающейся дугой в месте ОЗЗ и отстроены в большей мере от бросков ёмкостных токов в переходных процессах. Обеспечить стабильное функционирование таких защит возможно в основном в сетях с резистивным заземлением нейтрали.

4.Защита нулевой последовательности на токах высших гармоник.

Так как основной недостаток защит, использующих токи и напряжения НП промышленной частоты, в том, что они не способны работать в сетях с компенсированной нейтралью из-за отсутствия устойчивого полезного сигнала 50 Гц, то были разработаны защиты от однофазных замыканий на землю, реагирующие на высшие гармоники электрических величин. При возникновении дуговых ОЗЗ содержание высших гармонических составляющих в сети резко увеличивается, особенно в токе повреждённой линии, где их доля значительно больше, чем в токах нулевой последовательности неповреждённых линий. Эти процессы наблюдаются в сетях всех видов заземления нейтрали.

Общие недостатки устройств, выполненных с использованием высших гармоник:

— вероятность отказа в срабатывании при ОЗЗ через переходные сопротивления;

— нестабильность состава и уровня высших гармоник в токе НП.

Условия селективности несрабатывания при внешних ОЗЗ и устойчивости срабатывания при внутренних повреждениях для устройств абсолютного замера высших гармоник обеспечиваются в основном на крупных подстанциях и электростанциях с большим числом присоединений.

5. Защита, реагирующая на наложенный ток.

Для повышения устойчивости функционирования защит от однофазных замыканий на землю, реагирующих на ток замыкания не промышленной частоты, была разработана защита, реагирующая на наложенный ток. Наложенный ток может быть частотой как выше промышленной, так и ниже. Для создания тока повышенной частоты возможно использование нелинейного сопротивления, включенного между нейтралью сети и землёй. Однако данное устройство значительно повышает стоимость таких защит и может снизить надёжность функционирования защиты. Также можно отметить тот факт, что значительная высокочастотная составляющая может присутствовать в токах присоединений и в нормальном режиме. Это в первую очередь относится к сетям, связанным с производствами, имеющими нелинейную нагрузку. В таких случаях описанный способ защиты непригоден. Кроме того, как показывают некоторые исследования, гармоники с частотой 100 Гц появляются почти в 2 раза чаще, чем, например, с частотой 25 Гц и амплитуды их намного больше.

К основным недостаткам защит, реагирующих на наложенный ток частотой ниже промышленной, можно отнести необходимость подключения в нейтрали сети специального устройства для создания контрольного тока, влияние на устойчивость функционирования защиты погрешностей ТТНП, возрастающих при уменьшении рабочей частоты, усложнение схемы первичной коммутации из-за необходимости подключения источника наложенного тока и трудности подключения источника вспомогательного тока при использовании в сети нескольких ДГР, установленных на разных объектах. Также не исключены сложности отстройки от естественных гармонических составляющих при внешних дуговых перемежающихся ОЗЗ, при которых спектр тока зависит от параметров сети и режима заземления её нейтрали, положения точки ОЗЗ в сети.

Централизация – решения проблемы с землей

Защиты на централизованном принципе лишены недостатков индивидуальных защит, таких как ложные срабатывания, связанные с переходными процессами на неповрежденных линиях. В централизованных защитах в основном применяют сравнение амплитудных или действующих значений токов нулевой последовательности. Поврежденный фидер определяется на основе сравнения токов нулевой последовательности по всем присоединениям и выборе присоединения с максимальным током нулевой последовательности. Расчет этих значений может проводиться как в начальный момент времени, то есть, основываясь на переходных величинах замыкания, так и в установившемся режиме. Кроме того, возможно применение высших гармонических составляющих токов нулевой последовательности либо наложенного тока с частотой, отличной от промышленной. Для расширения области применения на подстанциях с большим числом присоединений, возможно введение в такие защиты дополнительной информации, которая позволяет произвести отстройку от действия в некоторых сложных режимах, например, получение информации о напряжении нулевой последовательности с другой секции шин подстанции может повысить чувствительность.

1.Централизованная защита с поочередным опросом каналов.

Первые централизованные защиты в силу отсутствия быстродействующих микропроцессорных систем использовали последовательное сравнение токов нулевой последовательности между каждым присоединениям с целью выявить присоединение с максимальном током замыкания на землю. По этой причине данные системы не имели широкого распространения, так как при большом количестве присоединений время обработки сигналов доходило до 9 секунд.

Читайте также:  Unicum nero ошибки hot 1 повышенное напряжение сети

2.Централизованная защита с параллельным опросом каналов.

За счет применения микропроцессорных систем и специальных физических элементов для устройств релейной защиты появилась возможность реализовать параллельное сравнение токов нулевой последовательности между каждым присоединением. Первые такие системы сравнивали амплитуды переходных токов, но в дальнейшем как показала практика данные системы имели ложные срабатывания из-за несинхронности или несинфазности сравниваемых сигналов, поскольку частоты и фазы переходных токов в повреждённом и неповреждённых присоединениях могут различаться между собой.

3.Централизованная защита с параллельным синхронизированным опросом каналов.

Следующий шаг в развитии защит от ОЗЗ требовал разработку устройств защиты, работающих в режиме импульсного сравнения токов нулевой последовательности во всех присоединениях, тем самым устраняя влияния несинфазности и несинхронности сравниваемых сигналов. Одной из таких разработок является защита типа Геум производства НПП «Микропроцессорные технологии» для сетей с изолированной (также способно работать и с резистивно-заземленной нейтралью) и компенсированной (комбинированной) нейтралью. Защита по принципу действия является централизованной токовой ненаправленной, сравнивающей амплитуды бросков емкостных токов нулевой последовательности во всех присоединениях защищаемой секции в момент срабатывания пускового органа, включенного на напряжение нулевой последовательности и определяющей повреждённое присоединение по наибольшей амплитуде. Ток срабатывания этой защиты не требуется отстраивать от ёмкостного тока каждого из защищаемых присоединений, что существенно повышает чувствительность защиты и тем самым выгодно отличает её от описанных ранее устройств ненаправленной токовой защиты нулевой последовательности. Являясь передовой разработкой в выявлении ОЗЗ данная защита, основываясь только на алгоритме относительного замера не способна охватить все многообразие режимов связанных с процессами, влияющими на работу защит от ОЗЗ, которые описаны выше. Таким образом, в данную защиту были внедрены еще дополнительные алгоритмы.

Источник

Защита земли от напряжения

Электротравмы в большинстве случаев происходят в режимах однофазного (однополюсного) прикосновения человека к токоведущей части электроустановки или к нетоковедущим металлическим конструкциям, случайно оказавшимся под напряжением вследствие повреждения электрической изоляции. Пожароопасные ситуации также в большинстве случаев возникают в режимах однофазного (однополюсного) замыкания на землю токоведущих частей электроустановки при эксплуатационных повреждениях изоляции. В этих режимах значения токов в цепях «токоведущая часть — земля» или «токоведущая часть — тело человека — земля» определяются параметрами цепей связи токоведущих частей с землей не только через сопротивления утечки, как это указывалось в предыдущей статье, но и через сопротивления замыкания на землю или принятого в проекте электроустановки искусственного заземления токоведущих частей.

Замыкания на землю
Согласно Правилам устройства электроустановок (п. 1.7.10) замыканием на землю называется случайное соединение находящихся под напряжением частей электроустановки с конструктивными частями, не изолированными от земли, или с землей непосредственно.
Вблизи места замыкания на землю формируется зона растекания тока — пространство, на поверхности которого электрические потенциалы отличны от нуля. Понятие об этой зоне — одно из основополагающих в теории электробезопасности. Поэтому рассмотрим его подробнее, взяв в качестве примера линию передачи электроэнергии (ЛЭП).
Пусть по какой-либо причине происходит замыкание фазного провода С на опору ЛЭП (увлажненность, загрязнение изоляторов, крылья птицы и пр.). Ток замыкания на землю протекает по контуру: фаза С — опора ЛЭП — земля — сопротивление заземления нейтрали R0 трансформатора ЛЭП — нейтраль 0 трансформатора (рис. 1).
Вблизи опоры ЛЭП формируется зона растекания тока (считается, что ее радиус равен 20 м). В этой зоне ток протекает в земле по радиусам во все стороны от фундамента опоры. Поэтому упрощенно поперечное сечение проводящего слоя земли можно принять за полусферу, площадь которой
S = 2 p x 2 ,
где x — расстояние до опоры. То есть по мере удаления от фундамента опоры ток замыкания на землю протекает как бы по проводнику с переменным сечением, увеличивающимся по мере удаления от места замыкания. Наибольшая плотность тока jзам наблюдается вблизи места замыкания (здесь наименьшее сечение проводника — земли). По мере удаления от места замыкания сечение проводника — земли возрастает и поэтому плотность тока jзам = Iзам/2 p x 2 постепенно уменьшается до бесконечно малого значения. Соответственно изменяется и напряженность электрического поля в зоне растекания тока E = r jзам (здесь r — удельное сопротивление грунта) — от максимального значения до нуля. То есть потенциалы электрического поля в зоне растекания тока изменяются от максимального значения j зам в месте замыкания на землю до практически нулевого значения на расстоянии 20 м от места замыкания. Такая закономерность характерна для любых вариантов замыканий на землю (замыкание на опору ЛЭП взято лишь для наглядности).

Сопротивление зоны растекания тока
Поскольку в зоне растекания тока существуют электрические потенциалы, она может представлять опасность для жизни человека. Поэтому всегда необходимо выполнять количественную оценку ее параметров, в частности, определять значение максимального потенциала jзам. Этот потенциал равен падению напряжения на зоне растекания тока в контуре тока замыкания на землю: jзам = IзамRзам, где Rзам — сопротивление зоны растекания тока. Так же как и сопротивление электрической изоляции, сопротивление зоны растекания тока — распределенный параметр, количественное значение которого может быть определено только путем специальных измерений.
Поставим эксперимент. Воткнем в землю два электрода Э1 и Э2 и через амперметр А подключим к ним источник измерительного напряжения Uизм (рис. 2).
Вблизи каждого из этих электродов возникают зоны растекания тока Iзам с максимальными потенциалами j зам1 и j зам2, причем j зам1 + j зам2 = Uизм. Значения этих потенциалов относительно земли можно измерить. Для этого применяют дополнительный электрод ЭВ, вынесенный за зону растекания тока, туда, где потенциал на поверхности земли j 0 близок к нулю.
Показание вольтметра V, подключенного между дополнительным и основным электродами, будет U = j зам — j 0 = j зам. Зная по показанию амперметра А значение тока замыкания на землю, получаем значения сопротивлений зон растекания тока Rзам1 = j зам1/Iзам и Rзам2 = j зам2/Iзам. Обычно вместо двух приборов — амперметра и вольтметра — используют логометр, позволяющий получить отношение потенциала к току непосредственно (измеритель заземления типа М 416 ).
Приведем некоторые количественные значения сопротивлений зон растекания тока. В варианте обрыва провода ЛЭП и замыкания его на землю сопротивление зоны растекания тока зависит от вида грунта; ориентировочно считают: при замыкании на щебень сопротивление зоны растекания тока равно 10 кОм, на асфальт — 1 кОм, на сырую землю — 100 Ом. Если замыкание произошло на водопроводную трубу, то сопротивление зоны растекания тока вокруг нее можно принять равным 100 Ом. Когда человек стоит на земле и касается токоведущей части, то под его ногами также возникает зона растекания тока с сопротивлением порядка 30 Ом (сырая земля), 1000 Ом (сухая земля), 10 кОм (щебень).

Читайте также:  Конденсатор емкостью 5 мкф заряженный до напряжения 120 в разряжается

Заземляющее устройство
Заземление — это намеренное соединение металлических токоведущих или нетоковедущих частей с землей. Оно может преследовать различные цели — защита от поражения током (защитное заземление), защита радиоэлектронной аппаратуры от помех, заземление нейтрали источника, рабочее заземление (в однопроводных системах электропитания и электросварочных установках), снятие заряда статического электричества и пр. Оно осуществляется с помощью заземляющего устройства, основным элементом которого является заземлитель — металлоконструкция, врытая в землю. В производственных условиях по контуру помещения располагается шина заземления (стальная или медная полоса, связанная с заземлителем). Заземляемые конструкции соединяются с шиной заземления заземляющими проводниками, сечение которых выбирается из соображений механической прочности (например, чтобы при уборке помещения исключить возможность случайного обрыва проводника) или термической устойчивости к токам замыкания. Требования к конструкции шины заземления и заземляющим проводникам приведены в ПУЭ (глава 1.7).
Количественной нормируемой характеристикой заземляющего устройства является его сопротивление Rз, то есть максимально допустимое значение сопротивления зоны растекания тока вблизи заземлителя (табл. 1).

На подвижных объектах (самолет, корабль и пр.) заземлителем является металлический корпус самого объекта. Здесь сопротивление заземляющего устройства определяется не нормами безопасности, а качеством (механической целостностью) винтового контактного соединения заземляющего проводника с металлоконструкцией (0,02 — 0,05 Ом). Правила контроля заземляющих устройств приведены в Правилах эксплуатации электроустановок потребителей (приложение 24).

Ток замыкания на землю
Значения токов однофазного замыкания на землю ограничены импедансами изоляции здоровых фаз (в сетях, изолированных от земли) или сопротивлением заземления нейтрали (в сетях с заземленной нейтралью). Поэтому на ток однофазного замыкания не реагирует ни аппаратура от токов междуфазного короткого замыкания (максимальная защита), ни аппаратура защиты от перегрузки (тепловая защита). В результате режим однофазного (однополюсного в двухпроводных сетях) замыкания на землю может существовать длительное время, приводя к пожароопасным ситуациям. В режиме однофазного замыкания распределенные по всей сети активные и емкостные токи утечки сосредотачиваются в месте замыкания. Именно здесь — на сопротивлении замыкания или на контакте с сопротивлением заземления — и выделяется активная мощность, под действием которой может произойти процесс роста температуры нагрева. Токи утечки на землю между здоровыми фазами и землей рассредотачиваются по всей сети на бесконечно малые токи по распределенным сопротивлениям утечки и поэтому пожарной опасности не представляют. Ток замыкания опасен именно в месте замыкания. По данным ВНИИ противопожарной обороны (полковник В.В.Смирнов) пожароопасными считаются такие токи, при которых в месте повреждения изоляции выделяется активная мощность более 17 Вт. Во взрывоопасных зонах опасен ток замыкания на землю, значение которого превышает 25 мА.
Предполагаемое (возможное) значение тока замыкания может быть рассчитано по формулам:

  • для трехфазной сети с изолированной нейтралью (соответствует замыканию фазы А, в случае замыкания другой фазы следует изменить индексы):
    (1)
  • для двухпроводной сети, изолированной от земли:
    (2)
  • для сети с глухим заземлением нейтрали:
    (3)

Здесь приняты следующие обозначения: ga, gb, gc — активные проводимости изоляции фаз, gзам — активная проводимость в месте повреждения изоляции (проводимость зоны растекания тока), Cф— емкости фаз относительно земли, Uф — фазное напряжение.

Источник

Оцените статью
Adblock
detector