Зависимость коэффициента усиления фэу от напряжения питания

Лабораторная работа 3 ИЗУЧЕНИЕ ПРИНЦИПА ДЕЙСТВИЯ СЦИНТИЛЛЯЦИОННОГО ДЕТЕКТОРА

Цель работы: Изучить основы сцинтилляционного метода регистрации излучения; изучить устройство сцинтилляционного детектора и определить эффективность регистрации гамма — излучения Cs — 137.

УСТРОЙСТВО СЦИНТИЛЛЯЦИОННОГО ДЕТЕКТОРА

Сцинтилляционный метод регистрации частиц – один из наиболее старых методов регистрации. Еще в 1919 г. в опытах по рассеянию заряженных частиц на ядрах Э. Резерфорд с сотрудниками регистрировали a-частицы, визуально наблюдая вспышки света в ZnS(Ag). Однако широкое развитие сцинтилляционный метод регистрации частиц получил лишь после изобретения фотоэлектронных умножителей – приборов, обладающих способностью регистрировать слабые вспышки света.

Один из первых фотоумножителей был построен Л. А. Кубецким в СССР в начале 40-х годов ХХ в. И с 1947 г. началось интенсивное развитие сцинтилляционного метода регистрации. Благодаря своей высокой эффективности сцинтилляционные детекторы и спектрометры получили применение в ядерной физике, биологии, геологии, медицине и в других отраслях науки и техники.

Основными элементами сцинтилляционного детектора являются Сцинтиллятор, фотоэлектронный умножитель (ФЭУ), оптическая система для сочленения сцинтиллятора и ФЭУ.

При взаимодействии с веществом сцинтиллятора заряженные частицы теряют свою энергию на возбуждение и ионизацию атомов cреды. Гамма-излучение, как излучение косвенно ионизирующее, само непосредственно ионизацию и возбуждение не производит: ионизируют и возбуждают атомы вещества сцинтиллятора электроны, образованные при взаимодействии γ-излучения с веществом сцинтиллятора. Возникающее при снятии возбуждения атомов излучение выходит из cреды в виде световых вспышек-сцинтилляций, число фотонов в которых зависит как от свойства и размеров сцинтиллятора, так и от вида частиц и энергии, передаваемой сцинтиллятору этими частицами.

Для регистрации этих сцинтилляций используется ФЭУ, преобразующий световые вспышки в электрические импульсы напряжения, поступающие далее в измерительный блок.

Основные характеристики сцинтилляторов

Сцинтилляторами обычно называют такие вещества, которые под действием ионизирующего излучения испускают фотоны в видимой или ультрафиолетовой части спектра. Причем при наличии большой вероятности испускания фотонов атомами и молекулами в возбужденных состояниях вероятность поглощения этих испущенных фотонов самим же сцинтиллирующим веществом должна быть мала: т. е. спектр испускания электромагнитного излучения должен быть сдвинут относительно спектра поглощения.

Все сцинтилляционные вещества можно разделить на три класса: на основе тех или иных органических соединений, неорганические кристаллы и газы.

Из органических соединений чаще всего применяются жидкие и твердые растворы ароматических соединений или монокристаллы антрацена, стильбена, толана и др.

Наиболее распространенными сцинтилляторами из неорганических кристаллов являются иодиты щелочных металлов, активированные таллием, и сульфид цинка, активированный серебром: NaJ(Tl), CsJ(Tl), ZnS(Ag). Чистые неактивированные криcталлы при комнатной температуре не обладают сцинтиллирующими свойствами.

С точки зрения регистрации излучений все сцинтилляторы, и органические и неорганические, должны удовлетворять некоторым требованиям как общего характера, так и специальным, обусловленным природой регистрируемых частиц.

Прежде всего вещество должно обладать высоким световым выходом C, определяемым как отношение среднего числа фотонов , возникающих в процессе одной сцинтилляции, к энергии , потерянной регистрируемой частицей в сцинтилляторе:

.

Так как практический интерес представляет число фотонов, выходящих из сцинтиллятора , то целесообразно ввести понятие внешнего светового выхода :

= ,

Где – коэффициент выхода фотонов из сцинтиллятора. Необходимо отметить, что внешний световой выход зависит от величины сдвига спектров испускания и поглощения, т. е. от прозрачности сцинтиллятора по отношению к собственному излучению, а также от толщины сцинтиллятора, количества примесей, уменьшающих его прозрачность, от состояния его поверхностей и т. п. В идеальных, абсолютно прозрачных для собственного излучения сцинтилляторах = .

Кроме светового выхода можно ввести понятие энергетического выхода x, выражающего отношение энергии фотонов, возникающих в процессе одной сцинтилляции, к энергии Е, потерянной регистрируемой частицей в сцинтилляторе:

X = ,

Где – средняя энергия фотонов сцинтилляции.

Процесс высвечивания сцинтилляции занимает конечное время. Так как время нарастания сцинтилляции значительно меньше времени спада (затухания сцинтилляции), то во всех практических случаях длительность сцинтилляции в целом можно характеризовать одной только постоянной времени t Затухания процесса:

.

Величина t время, в течение которого интенсивность высвечивания J падает в Е раз. В экспериментах, где требуется высокое временное разрешение, сцинтилляторы выбираются с достаточно малым временем высвечивания.

Применяемые сцинтиллирующие неорганические кристаллы (NaJ(Tl), CsJ(Tl), LiJ(Sn), LiJ(Tl), ZnS(Ag)) характеризуются большим световым выходом и временем высвечивания (порядка 10–4 – 10–7 с). Органические кристаллы (стильбен, антрацен и другие) характеризуются не только меньшим световым выходом, чем неорганические, но и меньшим временем высвечивания (порядка 10–8 – 10–9 с). Из органических сцинтиллирующих растворов обычно применяются паратерфенил в ксилоле.

Процессы, происходящие в фотоумножителях, и основные их характеристики

Импульс cвета, возникающий в сцинтилляторе при прохождении ионизирующей частицы, с помощью фотоэлектронного умножителя преобразуется в электрический импульс.

Фотоэлектронный умножитель – это фотоэлемент с многократным усилением, которое основано на явлении вторичной электронной эмиссии. Он состоит из фотокатода 4, фокусирующего устройства 5, нескольких динодов 6 и анода 8 (рис. 1). Все электроды ФЭУ помещены в баллон с высоким вакуумом. Фотокатод выполнен в виде тонкого полупрозрачного слоя и находится на внутренней стороне торцевой стенки стеклянного баллона ФЭУ. Для увеличения коэффициента вторичной эмиссии диноды покрыты тонкой пленкой вещества с малой работой выхода для электронов.

Читайте также:  Настройка биоса для включения компа после сбоя напряжения

При работе ФЭУ ко всем его электродам приложены определенные разности потенциалов. Проникая сквозь прозрачное стекло, кванты света вырывают из светочувствительного слоя фотокатода некоторое количество электронов. Фотоэлектроны, выходящие с разными скоростями и под разными углами к поверхности катода, ускоряются электрическим полем в вакууме и с помощью фокусирующей системы собираются на первом диноде умножителя.

Рис. 1. Принцип работы сцинтилляционного детектора:

1 – радиоактивный источник; 2 – сцинтиллятор; 3 – светопровод; 4 – фотокатод ФЭУ; 5 – фокусирующие электроды; 6 – диноды; 7 – фотоэлектроны; 8 – анод; 9 – делитель ФЭУ; 10 – сопротивление нагрузки.

При ударах электронов о первый динод происходит вторичная электронная эмиссия. Электроны, выбитые из первого динода, вновь ускоряются в следующем межэлектродном промежутке и, попадая на второй динод, вызывают в свою очередь вторичную электронную эмиссию со второго динода. Для характеристики электронной эмиссии вводится величина, называемая коэффициентом вторичной эмиссии s, представляющим собой число вторичных электронов, выбитых одним первичным электроном. Описанный процесс происходит последовательно на всех динодах, и в зависимости от свойств и числа динодов при s > 1 число электронов на последних динодах может превысить первоначальное число фотоэлектронов на несколько порядков. Электроны с последнего динода собираются на аноде фотоумножителя.

Физические явления, лежащие в основе работы ФЭУ – фотоэлектрический эффект и вторичная электронная эмиссия, носят статистический характер. Поэтому параметры ФЭУ также имеют статистическую природу и, говоря о них, будем подразумевать средние значения этих параметров.

Характеристики фотокатода образуют группу светотехнических параметров ФЭУ. Из них наиболее важное значение имеют квантовый выход, спектральная характеристика, интегральная чувствительность.

Квантовый выход фотокатода e представляет собой вероятность вырывания одного фотоэлектрона фотоном, попавшим на фотокатод. При этом подразумевается, что падающий на фотокатод свет близок к монохроматическому. Квантовый выход зависит от длины волны падающего света, материала фотокатода и его толщины. Численно он обычно выражается в процентах.

Зависимость e от длины волны l падающего света носит название Спектральной характеристики фотокатода и обозначается e(l).

Практически существенно не только число фотонов, испускаемых сцинтиллятором, но и степень перекрытия внешнего оптического спектра сцинтилляции со спектральной характеристикой e(n) данного ФЭУ, определяемая коэффициентом согласования:

.

Интегральная чувствительность фотокатода представляет собой отношение фототока к падающему на фотокатод световому потоку при освещении фотокатода источником белого света с определенной цветовой температурой.

Сбор фотоэлектронов на первый динод характеризуется коэффициентом сбора L, который может принимать значения от 0 до 100 %.

Умножительная система ФЭУ характеризуется Коэффициентом усиления М. Последний определяется как отношение величины тока на выходе ФЭУ к его величине на входе умножительной системы. Коэффициент усиления ФЭУ равен: где a – коэффициент, определяющий долю электронов, попадающих с одного динода на другой; – коэффициент вторичной эмиссии I-го динода.

Необходимо отметить, что коэффициент вторичной эмиссии s зависит не только от материала и состояния поверхности динода, но и от энергии первичных электронов, т. е. от ускоряющей разности потенциалов, приложенной к двум соседним динодам: с увеличением энергии электронов s вначале растет, а затем выше энергии 100 – 1000 эВ (в зависимости от материала) падает. Физически такое поведение можно объяснить следующим. Первичные электроны, попадая в материал динода, в результате упругих и неупругих соударений передают свою энергию многим электронам среды. Чем выше энергия первичного электрона, тем большему числу электронов он передает свою энергию. Но чем выше энергия первичного электрона, тем на большую глубину он проникает и, следовательно, тем на большей глубине в материале приобретают энергию вторичные электроны. Последние могут покинуть материал динода только в том случае, если они образовались на глубине, которая меньше длины своего пробега в данном материале.

Зависимость коэффициента усиления М от напряжения питания приведена на рис. 2 (литературные данные).

Рис. 2. Зависимость коэффициента усиления ФЭУ от разности потенциалов между динодами для числа динодов N = 10 и σmax = 10

При высоких значениях мгновенных токов, обусловленных или очень большим коэффициентом усиления М, или очень большой интенсивностью вспышки, сказывается влияние объемного заряда, искажающего поле в области анода и последних динодов (пунктирная линия). Для некоторых ФЭУ этот эффект заметен при токах на аноде

Произведение коэффициента усиления ФЭУ на коэффициент сбора на первый динод и на интегральную чувствительность фотокатода называется Общей чувствительностью ФЭУ.

Если даже на фотокатод ФЭУ не падает световой поток, на выходе ФЭУ все-таки наблюдается некоторый ток, называемый темновым. Причиной этого являются термоэлектронная эмиссия с поверхности фотокатода и первых динодов, автоэлектронная холодная эмиссия, радиоактивность материала, из которого изготовлен ФЭУ, и ряд других причин.

РАБОТА СЦИНТИЛЛЯЦИОННОГО ДЕТЕКТОРА

Сборка сцинтилляционного детектора заключается в рациональном сочленении сцинтиллятора и фотоумножителя, которое обеспечило бы при наибольшем отношении амплитуд импульсов, вызванных радиоактивным источником и темновым током, наилучшую разрешающую способность детектора как по амплитудам, так и по времени. Сцинтиллятор, имеющий обычно форму цилиндра, устанавливается перед фотокатодом умножителя (см. рис. 1). Так как коэффициент преломления света для большинства сцинтилляторов довольно велик, значительная часть света, возникающего в сцинтилляторе, испытывает на его поверхности полное внутреннее отражение. Поэтому для обеспечения хорошего оптического контакта (и, следовательно, для повышения светосбора) между сцинтиллятором и фотокатодом вводится тонкий слой вещества с меньшим показателем преломления (силиконовое или вазелиновое масло).

Читайте также:  График зависимости напряжения между пластинами конденсатора u от времени t

Радиоактивное излучение, падающее на сцинтиллятор, вызывает в нем вспышки – сцинтилляции. Световые кванты, попадая на фотокатод ФЭУ, выбивают фотоэлектроны, которые дают начало лавине. В момент прихода электронной лавины на анод ФЭУ на выходном нагрузочном сопротивлении возникает импульс напряжения.

Межэлектродные разности потенциалов задаются обычно с помощью делителя напряжения от высоковольтного источника питания. Изменяя напряжение, питающее делитель, можно варьировать в широких пределах коэффициент усиления ФЭУ. С увеличением напряжения на делителе ФЭУ коэффициент усиления быстро возрастает. Причиной этого является увеличение коэффициента вторичной эмиссии, а также некоторое улучшение фокусировки.

При измерении числа частиц очень важен параметр, который характеризует вероятность создания на выходе детектора электрического импульса при попадании частицы в детектор. Такой параметр носит название Эффективности регистрации детектора h, определяющейся как Отношение числа электрических импульсов, зарегистрированных на выходе детектора в единицу времени, к числу частиц, попавших в детектор за то же время. Эффективность регистрации является функцией как энергии и вида исследуемого излучения, так и размеров и типа детектора. Основным требованием к сцинтилляционным детекторам, как и ко всем детекторам вообще, является высокая эффективность регистрации. Как известно, сечения фотоэффекта и комптон-эффекта тем выше, чем больше Z вещества.

Достоинством сцинтилляционных детекторов является тот факт, что их эффективность регистрации для косвенно ионизирующих излучений (g-излучение, рентгеновское излучение) благодаря большому Z сцинтилляторов на целый порядок превосходит эффективность регистрации газоразрядных счетчиков. В литературе указывается, что в случае γ-излучения для кристаллов NaJ(Tl) небольших размеров она составляет приблизительно 17 %.

Одним из основных требований к детекторам является малое Время Разрешения (оно определяет тот минимальный временной интервал между двумя последовательными частицами, которые детектор может зафиксировать раздельно). В сцинтилляционном детекторе при использовании неорганических кристаллов, время высвечивания которых сравнительно велико и составляет десятые доли микросекунды и больше, временные свойства фотоумножителя практически не играют никакой роли, и время разрешения всего сцинтилляционного детектора будет определяться временем высвечивания кристалла. При работе же с органическими сцинтилляторами (и особенно с жидкими и твердыми растворами), где время высвечивания очень мало, время разрешения фотоумножителя может оказаться сравнимым со временем высвечивания сцинтиллятора и при расчете разрешающей способности детектора по времени должно быть учтено.

Достоинством сцинтилляционного детектора является то, что его время разрешения на несколько порядков меньше времени разрешения газоразрядных детекторов. Применение сцинтилляционных детекторов в схемах совпадений с высокой разрешающей способностью открыло новые перспективы при исследовании разного рода одновременных процессов.

Кроме того, нужно отметить, что поскольку коэффициент вторичной эмиссии не зависит от числа падающих Электронов, то ФЭУ представляет собой Линейный прибор, т. е. заряд на аноде пропорционален числу первичных фотоэлектронов и соответственно интенсивности световой вспышки, попавшей на катод. А так как обычно энергия, потерянная частицей в кристалле, пропорциональна интенсивности световой вспышки, то амплитуда импульса на выходе ФЭУ пропорциональна потерянной энергии частицы. Это позволяет создавать на основе сцинтилляционного детектора различные приборы для измерения энергии радиоактивного излучения, что невозможно при использовании гейгеровских счетчиков. И только, когда импульсы на выходе ФЭУ достаточно велики, линейность может нарушаться, как было указано выше, за счет искажения поля пространственным Зарядом в области анода и последних динодов.

Важным моментом перед тем, как начинать измерения, является правильный подбор напряжения питания ФЭУ. В Радиометрических измерениях, когда производится счет импульсов, для этих целей чаще всего используется счетная характеристика, Т. е. зависимость скорости счета импульсов на выходе детектора N От напряжения питания ФЭУ U (рис. 3).

Как видно из рис. 3, с ростом напряжения питания U величина N вначале растет, а далее становится постоянной. Это объясняется тем, что при малых величинах U Значение коэффициента усиления ФЭУ М также мало. В результате амплитуда импульсов на выходе ФЭУ незначительна по величине и может оказаться ниже порога чувствительности регистрирующего устройства. В таком случае импульсы не будут зарегистрированы. С увеличением напряжения U Растет коэффициент усиления М и амплитуда импульсов увеличивается настолько, что может превысить порог чувствительности регистрирующего устройства. В этот момент на пересчетном устройстве начинается счет импульсов.

Рис. 3. Счетная характеристика

При дальнейшем увеличении U еще бόльшая доля импульсов будет иметь амплитуду, превышающую порог чувствительности, что даст еще большее увеличение скорости счета N.

Дальнейшее повышение напряжения питания может привести к тому, что скорость счета импульсов N станет почти постоянной и не будет зависеть от величины U, так как амплитуды почти всех импульсов, поступающих с детектора, превышают порог чувствительности и почти все импульсы регистрируются.

При очень больших напряжениях U скорость счета N может резко возрасти из-за того, что амплитуда шумовых импульсов ФЭУ тоже становится очень большой.

Выделенная на рис. 3 область плато, где величина N слабо зависит от напряжения питания U, используется для подбора напряжения питания; обычно рабочее напряжение выбирают на середине плато.

Читайте также:  Ротор трехфазного синхронного генератора имеет 12 полюсов частота напряжения

Критерием же оптимального рабочего напряжения в Спектрометрических Измерениях является высокое энергетическое разрешение. Известно, что энергетическое разрешение детектора тем выше, чем выше коэффициент усиления ФЭУ М, т. е. чем больше величина напряжения питания U.

РЕГИСТРАЦИЯ G-КВАНТОВ СЦИНТИЛЛЯЦИОННЫМ ДЕТЕКТОРОМ

При работе со сцинтилляционным детектором, предназначенным для решения той или иной физической задачи, следует учесть одно очень важное специфическое обстоятельство: поскольку свойства излучений, подлежащих регистрации, в том или ином случае могут быть резко различны, особое внимание необходимо уделить рациональному выбору сцинтиллятора, конкретные свойства которого должны наилучшим образом отвечать поставленной задаче. К фотоумножителю особых требований, связанных со спецификой самого регистрирующего излучения, обычно не предъявляется.

При регистрации g-излучения выбор сцинтиллятора определяется требованием высокой эффективности, так как g-излучение – излучение проникающее. Для узкого параллельного моноэнергетического пучка g-квантов, падающих нормально на сцинтиллятор толщиной Х, эффективность регистрации η определяется как отношение числа зарегестрированных частиц к числу падающих на детектор частиц:

,

Где t – коэффициент поглощения g-квантов в веществе сцинтиллятора, зависящий от энергии излучения и среднего эффективного заряда вещества сцинтиллятора Z.

С увеличением величина  (и, следовательно, ηпадает; c увеличением значений Z коэффициент поглощения g-квантов t (и, следовательно, эффективность регистрации η) растет. Поэтому в сцинтилляционных детекторах для регистрации g-квантов используются в основном неорганические кристаллы с большим атомным номером Z [NaJ(Tl), CsJ(Tl)].

Порядок проведения эксперимента

На рис. 4 приведена схема радиоактивного распада изотопа Сs-137, изпользуемого в данной лабораторной работе.

Рис.4. Схема радиоактивного распада изотопа Cs-137

Амплитудные спектры, измеренные во время эксперимента с использованием изотопа Cs-137, имеют вид, изображенный на рис. 5.

При неправильном выборе режима работы спектрометра форма этих спектров может быть значительно искажена, поэтому важно тщательно подбирать уровень питания ФЭУ U, коэффициент усиления усилителя K, верхний и нижний пороги дискриминатора ДВУ и ДНУ.

При изменении напряжения питания ФЭУ U изменяется его коэффициент усиления М. В результате изменяется величина амплитуды выходного сигнала А и, следовательно, положение максимума пика полного поглощения . Поэтому изучение зависимости величины амплитуды импульса на выходе детектора А от величины напряжения питания ФЭУ можно свести к изучению зависимости положения максимума пика полного поглощения от величины напряжения питания.

Рис. 5. Амплитудный спектр импульсов на выходе детектора

1. Включить компьютер. Зайти в программу «Спектр». После регистрации включить электронный блок; нажать на клавишу “Спектрометр” и задать на панели дисплея рабочий режим установки; нажать на клавишу «Установка».

2. Установить время накопления спектра T = 150 с.

3. Набрать амплитудные спектры выходных импульсов при различных величинах напряжения питания ФЭУ. Cпектры записать в файлы.

Изучение зависимости амплитуды выходных импульсов детектора от величины напряжения питания ФЭУ

Задание 1. Ввести в Mathcad файлы данных со спектрами S001–S010. Присвоить название векторной переменной, описывающей спектр; Определить номер канала как ранжированную переменную K, изменяющуюся от 0 до 1023. Построить амплитудные спектры.

Задание 2. Выделить в полученных спектрах пики полного поглощения; с помощью операции Trace провести грубые оценки положения максимума пика полного поглощения на шкале амплитуд, дисперсии, левой и правой границ пика. Оценить площадь под пиком.

Задание 3. Аппроксимировать пик полного поглощения функцией Гаусса; найти точные значения номера канала , соответствующего положению максимума пика полного поглощения.

Задание 4. Построить зависимость от величины напряжения питания ФЭУ U (см. рис. 6); объяснить ход зависимости от величины напряжения питания. Сравнить с литературными данными. Выбрать рабочее напряжение ФЭУ для дальнейшей работы.

Рис. 6. Зависимость положения максимума пика полного поглощения K0 от величины напряжения питания U

Определение эффективности регистрации детектора γ-излучения

Задание 5. Используя спектр, измеренный, например, при уровне питания ФЭУ U = 550 В и коэффициент усиления K = 1, вычислить площадь под всем спектром Р и найти число импульсов, зарегистрированных детектором за 1 с: N = P/150.

Задание 6. Зная активность используемого радиоактивного изотопа Cs-137, определить эффективность регистрации γ-излучения Cs-137:

,

Где – число γ-квантов, падающих на поверхность сцинтиллятора за 1с;

.

Число 0,85 – вводится как поправка на схему распада (см. схему распада, приведенную на рис. 5). Активность радиоактивного источника; = 120 кБк. Ω относительный телесный угол, под которым детектор облучается источником. Это угол зависит от радиуса сцинтиллятора S и от расстояния между источником и сцинтиллятором H.

.

Дать оценку полученному результату; сравнить с литературными данными.

Определение фоточасти и фотоэффективности регистрации

Задание 7. Выделить пик полного поглощения в амплитудном спектре, используемом в задании 5, вычислить его площадь . Определить фоточасть как отношение площади под фотопиком к площади под всем спектром Р (значение Р взять из задания 5).

Задание 8. Определить фотоэффективность регистрации γ-излучения, как произведение эффективности регистрации, умноженной на фоточасть:

.

1. Объяснить процессы, происходящие в сцинтилляторе, и перечислить основные параметры сцинтиллятора.

2. На каких двух физических явлениях основана работа фотоэлектронного умножителя?

3. Перечислить основные параметры фотоэлектрических умножителей.

4. Что такое эффективность регистрации детектора? От каких параметров детектора и излучения она зависит? Что такое фоточасть и фотоэффективность?

5. Охарактеризовать особенности регистрации γ-излучения.

Источник

Оцените статью
Adblock
detector