Зависимость количества теплоты от напряжения

Закон Джоуля-Ленца

Электричество — неотъемлемый признак нашей эпохи. Абсолютно всё вокруг завязано на нём. Любой современный человек, даже без технического образования, знает, что электрический ток, текущий по проводам, способен в некоторых случаях нагревать их, зачастую до очень высоких температур. Казалось бы, это заведомо всем известно и не стоит упоминания. Однако, как объяснить это явление? Почему и как происходит нагрев проводника?

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц «застрял» с расчётами, так как параметры его смоделированной цепи «источник энергии — проводник — потребитель энергии» сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало — невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший «нагреватель» — стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся — тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Закон Джоуля-Ленца

В итоге, спустя десятилетие, в 1843 году Эмилий Ленц выставил на всеобщее обозрение научного сообщества результат своих опытов в виде закона. Однако, оказалось, что его опередили! Пару лет назад английский физик Джеймс Прескотт Джоуль уже проводил аналогичные опыты и также представил общественности свои результаты. Но, тщательно проверив все работы Джеймса Джоуля, русский учёный выяснил что собственные опыты гораздо точнее, наработан больший объём исследований, потому, русской науке есть чем дополнить английское открытие.

Научное сообщество рассмотрело оба результата исследований и объединила их в одно, тем самым закон Джоуля переименовали в закон Джоуля-Ленца. Закон утверждает, что количество теплоты, выделяемое проводником при протекании по нему электрического тока , равно произведению силы этого тока в квадрате, сопротивлению проводника и времени, за которое по проводнику течёт ток. Или формулой:

Q — количество выделяемого тепла (Джоули)

I — сила тока, протекающего через проводник (Амперы)

R — сопротивление проводника (Омы)

t — время прохождения тока через проводник (Секунды)

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы «трётся», соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

Читайте также:  Ремонт стабилизаторов напряжения voto

Из формулы также следует — чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление 0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом — будет неравномерный нагрев в месте скрутки. В итоге — подгорание с последующим пропаданием контакта.

Применение закона Джоуля-Ленца в жизни

Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины — первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.

Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна , данный эффект использовали в качестве источника света. Появились первые лампочки.

Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку

Заключение

Таки образом, можно сказать что на законе Джоуля-Ленца держится чуть ли не вся электрика и электротехника. Открыв этот закон, появилась возможность уже заранее предсказать некоторые будущие проблемы в освоении электричества. Например, из-за нагрева проводника передача электрического тока на большое расстояние сопровождается потерями этого тока на тепло. Соответственно, чтобы компенсировать эти потери нужно занизить передаваемый ток, компенсируя это высоким напряжением. А уже на оконечном потребителе, понижать напряжение и получать более высокий ток.

Закон Джоуля-Ленца неотступно следует из одной эпохи технологического развития в другую. Даже сегодня мы постоянно наблюдаем его в быту – закон проявляется всюду, и не всегда люди ему рады. Сильно греющийся процессор персонального компьютера, пропадание света из-за обгоревшей скрутки «медь-алюминий»,выбитая вставка-предохранитель, выгоревшая из-за высокой нагрузки электропроводка – всё это тот самый закон Джоуля-Ленца.

Раз уж заговорили про ДжОУля )) Читайте статья про ОУ — Операционный усилитель.

Источник

Зависимость количества теплоты от напряжения

Раздел ОГЭ по физике: 3.9.Закон Джоуля-Ленца
Раздел ЕГЭ по физике: 3.2.8. Работа электрического тока. Закон Джоуля–Ленца

Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt . Учитывая, что U = IR, в результате получаем формулу:

Q = I 2 Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

♦ Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I 2 Rt (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.

Читайте также:  Стабилизатор напряжения с минимальной погрешностью

Применяя закон Ома, можно получить эквивалентные формулы: Q = IUt , Q= U 2 t/R

Где применяется закон Джоуля-Ленца ?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей. Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.

Нагревание проводов является вредным, поскольку приводит к потерям электроэнергии при передаче ее от источника к потребителю. Для уменьшения этих потерь силу тока уменьшают, повышая напряжение источника с тем, чтобы передаваемая мощность осталась прежней. Чтобы избежать электрического пробоя изоляции проводов, их поднимают на большую высоту на мачтах высоковольтных линий электропередач, связывающих крупные электростанции с городами и поселками, отстоящими от них на десятки и сотни километров.

Вы смотрели конспект урока физики в 8 классе «Закон Джоуля-Ленца и его применение».
Выберите дальнейшие действия:

Источник

Закон Джоуля-Ленца и его применение

Современный человек привык к тому факту, что включив в розетку утюг, настольную лампу либо обычный кипятильник, техника сразу начнет отдавать тепловую энергию и свет. По какому же закону физики происходит данное действие? Объяснить это удалось Джеймсу Джоулю и Эмилю Ленцу. Результат их исследований получил название закона Джоуля-Ленца. На практике он помог достичь больших открытий в электромеханике.

Формулировка закона Джоуля-Ленца

Правило было обобщено и сформулировано на основе трудов двух физиков — британского и русского. Джоуль и Ленц свой закон вывели практически одновременно, но независимо друг от друга, поэтому он и был назван именами обоих ученых.

Формулировка закона хорошо иллюстрирует следующее: если на участок цепи пустить электричество, то провод начнет нагреваться. В бытовых условиях тепловое действие тока наблюдается в лампах накаливания и всех электроприборах. Если подключить устройство со спиралью на конце участка цепи в розетку, то она нагреется, и выделит тепло. Например, подключенный к электричеству сварочный аппарат начнет плавить электрод, электрический чайник или кипятильник нагреют воду, а настольная лампа наполнит комнату светом.

Кратко закон Джеймса Джоуля и Эмиля Ленца можно сформулировать так: количество выделяемой теплоты при нагревании полупроводника либо проводника прямо пропорционально определенному количеству времени, за которое происходит воздействие тока, плюс сопротивлению и квадрату рабочей силы электрического тока.

Физический смысл закона

Закон Джоуля-Ленца, с помощью которого определение количества тепла, выделяющегося при воздействии силы тока в проводнике, осуществляется достаточно просто, подтверждает также, что это количество напрямую зависит от сопротивления. Сам нагрев происходит в результате того, что свободные электроны, перемещаясь под действием электрополя, бомбардируют атомы молекул материала проводника. При этом они передают им собственную кинетическую энергию, преобразующуюся в тепловую.

Читайте также:  Калькулятор расчета напряжения после резистора

Чем выше сила тока, тем большее количество электронов проходит через сечение проводника, и тем чаще происходят столкновения между ними и атомами. Соответственно, проводнику передается большое количество энергии, и он сильно нагревается.

В проводнике с большим сечением столкновений частиц будет намного меньше, следовательно, выделится меньше тепла. С учетом того, что между удельным сопротивлением любого проводника и его сечением существует обратно пропорциональная зависимость, можно сказать, что чем выше сопротивление проводника, тем сильнее он нагревается.

Как видим, руководствуясь законом Джоуля-Ленца, можно сделать два вывода:

  1. С увеличением сопротивления проводника, будет увеличиваться и количество выделяемой теплоэнергии. Иными словами, количество теплоты прямо пропорционально сопротивлению.
  2. Выделившееся количество теплоты в проводнике за время прохождения тока, зависит от мощности последнего. Иными словами, если увеличивается мощность тока, то количество свободных электронов, проходящих через проводник за единицу времени, тоже будет увеличиваться.

Согласно закону сохранения энергии в физике, в проводнике под воздействием тока происходит преобразование кинетической энергии свободных заряженных частиц в тепловую внутреннюю энергию.

Уравнения закона в различных формах

Формулы, выведенные для закона Джоуля-Ленца, наглядно демонстрируют зависимость количества теплоты от сопротивления и мощности тока. Согласно этому закону, любой участок локальной цепи, пребывающий под воздействием электроэнергии, должен выделять тепло.

Уравнение в интегральной форме

При отсутствии на участке цепи каких-либо механических или химических процессов, требующих затрат электрической энергии, теплота, выделенная проводником, будет равна работе тока. То есть, Q = A.

Формулу для количества теплоты можно записать в таком виде:

С учетом того, что уравнение для напряжения участка цепи можно записывать через силу тока и сопротивление (закон Ома U = I×R), формула для количества теплоты имеет вид:

С помощью этой формулы закон Джоуля-Ленца выражается в интегральной форме.

Математически ее еще можно выразить так:

Уравнение в дифференциальной форме

Иногда бывает так, что величина силы тока остается неизвестной, однако существуют точные данные о том, какое на участке цепи напряжение. В этом случае также стоит воспользоваться законом Ома. Исходя из того, что I = U/R, можно представить формулу Джоуля-Ленца в дифференциальной форме:

Следовательно, можно использовать два уравнения для определения количества тепла, выделяемого проводником, пребывающим под воздействием электротока. Но их применение возможно лишь для тех случаев, когда работа и мощность электрического тока расходуются исключительно на выделение тепла, а других потребителей энергии не существует. Единицей измерения выделенного тепла является джоуль: 1 Дж = 1 В × 1 А × 1 с.

Практическое применение закона в повседневной жизни человека
Закон Джоуля-Ленца наглядно применяется на практике при работе бытовых электрических приборов. Как всем известно, чтобы нагреть электрочайник, воспользоваться феном, утюгом или паяльником, необходимо превратить электричество в тепло. Свечение лампы накаливания происходит из-за наличия вольфрамовой нити, которая при высоком напряжении тока способна осветить все вокруг.

Стоит отметить, что получение теплоэнергии от электричества достаточно выгодно, так как помогает избежать энергопотерь. Достаточно лишь уменьшить силу тока, чтобы выровнять количество поступающего тепла от прибора. Также это повышает электробезопасность и регулирует нагрузку на сетевое напряжение.

Но нельзя допускать, чтобы проводник нагревался очень сильно. Под воздействием высокой температуры разрушается структура металла или, если говорить просто, он начинает плавиться. Это может стать причиной короткого замыкания, что в свою очередь приводит к выводу из строя элекрооборудования или даже пожару. Чтобы избежать коротких замыканий используются защитные блоки, предохранители и автоматические выключатели.

Применение закона на практике делает жизнь человека очень удобной, поэтому точно можно сделать вывод, что это в своем роде гениальное достижение, на котором держится вся электротехника. На сегодняшний день практически каждый бытовой прибор в любом доме работает на электричестве, и эта работа основывается на взаимосвязи силы тока и тепловой энергии. Главное, проводить правильные расчеты, чтобы не допускать перегрева деталей в устройстве.

Видео по теме

Источник

Оцените статью
Adblock
detector