Зависимость напряжения пробоя от расстояния между электродами

Электрическая прочность диэлектриков

Электрическая прочность диэлектрика определяет свойство данного диэлектрика выдерживать приложенное к нему электрическое напряжение. Так, под электрической прочностью диэлектрика понимают среднее значение напряженности электрического поля Епр, при которой в диэлектрике наступает электрический пробой.

Электрический пробой диэлектрика — это явление резкого роста электропроводности данного материала под действием приложенного к нему напряжения, с последующим образованием проводящего плазменного канала .

Электрический пробой в жидкостях или газах называют еще электрическим разрядом. По сути такой разряд формируется разрядным током конденсатора, образованного электродами, к которым приложено пробивное напряжение.

В этом контексте пробивным напряжением Uпр называется такое напряжение, при котором начинается электрический пробой, и значит электрическую прочность можно найти по следующей формуле (где h – толщина пробиваемого образца):

Очевидно, пробивное напряжение в каждом конкретном случае связано с электрической прочностью рассматриваемого диэлектрика и зависит от толщины промежутка между электродами. Соответственно, с увеличением промежутка между электродами увеличивается и значение пробивного напряжения. В жидких и газообразных диэлектриках развитие разряда при пробое происходит по разному.

Электрическая прочность газообразных диэлектриков

Ионизация — процесс превращения нейтрального атома в положительный или отрицательный ион.

В процессе пробоя большого промежутка в газовом диэлектрике, друг за другом следуют несколько стадий:

1. В газовом промежутке, в результате фотоионизации молекулы газа, непосредственно из металлического электрода, или случайно, появляется свободный электрон.

2. Появившийся в промежутке свободный электрон разгоняется электрическим полем, энергия электрона при этом растет, и в конце концов становится достаточной для ионизации нейтрального атома при соударении с ним. То есть происходит ударная ионизация.

3. Вследствие множества актов ударной ионизации образуется и развивается электронная лавина.

4. Образуется стример — плазменный канал, сформированный положительными ионами, которые остались после прохождения лавины электронов, и отрицательными, которые теперь втягиваются в положительно заряженную плазму.

5. Емкостный ток через стример вызывает термоионизацию, и стример преобразуется в лидер.

6. При замыкании разрядного промежутка каналом разряда происходит главный разряд.

Если разрядный промежуток достаточно мал, то процесс пробоя может закончиться уже на стадии лавинного пробоя или на стадии образования стримера — на стадии искры.

Электрическую прочность газов определяют:

Расстояние между электродами;

Давление в пробиваемом газе;

Сродство молекул газа к электрону, электроотрицательность газа.

Связь с давлением объясняется так. С ростом давления в газе, расстояния между его молекулами уменьшаются. Электрону при разгоне необходимо на длине свободного пробега, гораздо меньшей, приобрести ту же энергию, которой хватит для ионизации атома.

Данная энергия определяется скоростью электрона при соударении, а скорость развивается за счет ускорения силой, действующей на электрон со стороны электрического поля, то есть за счет его напряженности.

Кривая Пашена показывает зависимость величины пробивного напряжения Uпр в газе от произведения расстояния между электродами и давления — p*h. Например, для воздуха при p*h = 0,7 Паскаль*метр, пробивное напряжение составляет около 330 вольт. Рост пробивного напряжения левее этого значения обусловлен тем, что вероятность столкновения электрона с молекулой газа снижается.

Сродством к электрону называется способность некоторых нейтральных молекул и атомов газов присоединять к себе дополнительные электроны, и становиться отрицательными ионами. В газах, обладающих атомами с высоким сродством к электрону, в электроотрицательных газах, электронам необходима большая энергия разгона для формирования лавины.

Известно, что в нормальных условиях, то есть при обычных температуре и давлении, электрическая прочность воздуха в промежутке длиной 1 см составляет приблизительно 3000 В/мм, но при давлении в 0,3 МПа (в 3 раза больше обычного) электрическая прочность того же воздуха становится близкой к 10000 В/мм. Для элегаза, электроотрицательного газа, электрическая прочность в нормальных условиях составляет приблизительно 8700 В/мм. А при давлении в 0,3 МПа достигает 20000 В/мм.

Читайте также:  Можно ли подключить стабилизатор напряжения через удлинитель

Электрическая прочность жидких диэлектриков

Что касается жидких диэлектриков, то их электрическая прочность не связана напрямую с химическим строением. А главное, что влияет на механизм пробоя в жидкости — это очень близкое, по сравнению с газом, расположение ее молекул. В жидком диэлектрике невозможна ударная ионизация, типичная для газов.

Энергия ударной ионизации приблизительно равна 5 эВ, и если выразить эту энергию как произведение напряженности электрического поля, заряда электрона и длины свободного пробега, которая равна примерно 500 нанометров, а затем вычислить из нее электрическую прочность, то получится 10000000 В/мм, а реальная электрическая прочность для жидкостей лежит в диапазоне от 20000 до 40000 В/мм.

Электрическая прочность жидкостей в реальности зависит от количества в этих жидкостях газа. Также электрическая прочность зависит от состояния поверхностей электродов, к которым приложено напряжение. Пробой в жидкости начинается с пробоя мелких пузырьков газа.

У газа диэлектрическая проницаемость значительно ниже, поэтому напряженность в пузырьке оказывается выше, чем в окружающей его жидкости. При этом электрическая прочность у газа ниже. Разряды в пузырьках приводят к росту пузырьков, и в конце концов, в результате частичных разрядов в пузырьках происходит пробой жидкости.

Большую роль в механизме развития пробоя жидких диэлектриков играют примеси. Рассмотрим, например, трансформаторное масло. Сажа и вода, в качестве проводящих включений, снижают электрическую прочность трансформаторного масла.

Вода хоть и не смешивается обычно с маслом, но мельчайшие ее капельки в масле под действием электрического поля поляризуются, образуют цепочки повышенной, по сравнению с окружающим маслом, электропроводности, в итоге по цепочке и происходит пробой масла.

Для определения электрической прочности жидкостей, в лабораторных условиях применяют электроды в форме полусфер, радиус которых в несколько раз превышает расстояние между ними. В промежутке между электродами создается равномерное электрическое поле. Типичное расстояние — 2,5 мм.

Для трансформаторного масла пробивное напряжение не должно быть меньше 50000 вольт, и лучшие его образцы отличаются значением пробивного напряжения в 80000 вольт. При этом, вспомните, что в теории ударной ионизации это напряжение должно было бы быть 2000000 — 3000000 вольт.

Так, чтобы повысить электрическую прочность жидкого диэлектрика необходимо:

Очистить жидкость от твердых проводящих частиц, таких как уголь, сажа и т. д.;

Устранить из жидкого диэлектрика воду;

Провести дегазацию жидкости (вакуумировать);

Повысить давление в жидкости.

Электрическая прочность твердых диэлектриков

Электрическая прочность твердых диэлектриков связана с временем, в течение которого приложено пробивное напряжение. И в зависимости от времени воздействия напряжения на диэлектрик, и от физических процессов, которые в это время происходят, различают:

Электрический пробой, возникающий через доли секунд после приложения напряжения;

Тепловой пробой, возникающий через секунды или даже через часы;

Пробой вследствие частичных разрядов, время его воздействия может составлять более года.

Механизм пробоя твердого диэлектрика заключается в разрыве химических связей в веществе под действием приложенного напряжения, с превращением вещества в плазму. То есть можно говорить о пропорциональности между электрической прочностью твердого диэлектрика и энергией его химических связей.

Твердые диэлектрики зачастую превышают по значению электрической прочности жидкости и газы, например изоляционное стекло обладает электрической прочностью около 70000 В/мм, поливинилхлорид — 40000 В/мм, а полиэтилен 30000 В/мм.

Причина теплового пробоя кроется в разогреве диэлектрика из-за диэлектрических потерь, когда энергия потерь по мощности превосходит энергию, отводимую от диэлектрика.

С повышением температуры растет число носителей, растет проводимость, угол потерь возрастает, в связи с этим температура повышается еще больше, электрическая прочность падает. В итоге из-за разогрева диэлектрика происходящий пробой получается при напряженности более низкой, нежели без разогрева, то есть если бы пробой был чисто электрическим.

Читайте также:  Почему поднимается напряжение при включении нагрузки

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Пробой диэлектриков

При напряженности электрического поля, превосходящей предел электрической прочности диэлектрика, наступает пробой. Пробой представляет собой процесс разрушения диэлектрика, в результате чего диэлектрик теряет электроизоляционные свойства в месте пробоя.

Величину напряжения, при котором происходит пробой диэлектрика, называют пробивным напряжением , а соответствующее значение напряженности электрического поля называется электрической прочностью диэлектрика .

Для равномерного электрического поля электрическая прочность (пробивная напряженность) диэлектрика определяется по формуле

где d — толщина диэлектрика в месте пробоя, м.

Пробой жидких диэлектриков — явление сложное, что объясняется сложным составом жидких диэлектриков и сильным влиянием загрязнений на развитие пробоя. На рис. 5-13 показана зависимость изменения электрической прочности трансформаторного масла от содержания влаги. Наиболее резкое снижение электрической прочности жидких диэлектриков вызывает эмульсионная вода. С повышением температуры эмульсионная вода переходит в растворенную; при этом жидкий диэлектрик становится более однородным и электрическая прочность его повышается.

Рис. 5-13. Изменение электрической прочности трансформаторного масла от содержания в нем воды.

Другие загрязнения (волокна, смолистые вещества и др.) подобно воде понижают электрическую прочность жидких диэлектриков.

Чистота поверхности электродов оказывает существенное влияние на электрическую прочность жидких диэлектриков.

Большая продолжительность воздействия электрического поля на жидкий диэлектрик вызывает резкое снижение пробивного напряжения (рис. 5-14).

Рис. 5-14. Зависимость пробивного напряжения жидкого диэлектрика от времени воздействия на него электрического поля.

Конфигурация электрического поля и полярность электродов также вызывают изменение пробивных характеристик жидких диэлектриков (рис. 5-15 и 5-16).

Рис. 5-15. Зависимость пробивного напряжения трансформаторного масла от расстояния между электродами.
1 — плоскость против шара диаметром 125 мм; 2 — плоскость против острия.

Рис. 5-16. То же, что рис. 5-15, но для постоянного напряжения. Электроды острие — плоскость:
1 — острие отрицательное; 2 — острие положительное.

Пробивное напряжение жидких диэлектриков повышается с увеличением давления (рис. 5-17). Зависимость пробивного напряжения от давления заметно уменьшается с повышением степени очистки электроизоляционных жидкостей, что указывает на большое влияние газообразных примесей.

Рис. 5-17. Зависимость пробивного напряжения трансформаторного масла от давления при 50 Гц.1-невакуумированное масло; 2-вакуумированное масло.

При импульсных воздействиях напряжения на слой жидкого диэлектрика зависимости пробивного напряжения от давления практически не наблюдается. С увеличением плотности жидкого диэлектрика его электрическая прочность линейно возрастает.

Влияние температуры на пробивные характеристики жидких диэлектриков различно в зависимости от их химического состава и степени загрязнения примесями. Заметные изменения электрической прочности с температурой наблюдаются у электроизоляционных жидкостей сложного химического состава, особенно при наличии в них загрязнений (влага, газы и др.). По мере приближения к температуре кипения электрическая прочность жидких диэлектриков резко понижается.

Наибольший практический интерес представляют теории, посвященные процессам пробоя технических электроизоляционных жидкостей. В большинстве этих теорий (авторы Н. Н. Семенов и А. Ф. Вальтер, Эдлер и др.) пробой жидких диэлектриков рассматривается как тепловой процесс, в результате которого в слое жидкого диэлектрика образуются газовые или паровые каналы. Паровая и газовая фазы в жидком диэлектрике возникают при нагреве его токами проводимости, повышенные значения которых наблюдаются в наиболее загрязненных частях диэлектрика. При критических значениях напряженности электрического поля в газовых и паровых каналах начинает развиваться процесс ударной ионизации газа, завершающийся пробоем.

Пробой твердых диэлектриков представляет собой или чисто электрический процесс (электрическая форма пробоя), или тепловой процесс (тепловая форма пробоя). В основе электрического пробоя лежат явления, в результате которых в твердых диэлектриках имеет место лавинное возрастание электронного тока, подобно тому как это наблюдается в процессе ударной ионизации в газообразных диэлектриках.

Читайте также:  Причины для списания стабилизатора напряжения

Характерными признаками электрического пробоя твердых диэлектриков являются:

  1. Независимость или очень слабая зависимость электрической прочности диэлектрика от температуры и длительности приложенного напряжения (до с).
  2. Электрическая прочность твердого диэлектрика в однородном поле не зависит от толщины диэлектрика (до толщин см).
  3. Электрическая прочность твердых диэлектриков находится в сравнительно узких пределах: В/см; причем она больше, чем при тепловой форме пробоя.
  4. Перед пробоем ток в твердом диэлектрике увеличивается по экспоненциальному закону, а непосредственно перед наступлением пробоя наблюдается скачкообразное возрастание тока.
  5. При наличии неоднородного поля электрический пробой происходит в месте наибольшей напряженности поля (краевой эффект).

Тепловой пробой имеет место при повышенной проводимости твердых диэлектриков и больших диэлектрических потерях, а также при подогреве диэлектрика посторонними источниками тепла или при плохом теплоотводе. Процесс теплового пробоя твердого диэлектрика состоит в следующем. Вследствие неоднородности состава отдельные части объема диэлектрика обладают повышенной проводимостью. Они представляют собой тонкие каналы, проходящие через всю толщину диэлектрика. Вследствие повышенной плотности тока в одном из таких каналов будут выделяться значительные количества тепла. Это повлечет за собой еще большее нарастание тока вследствие резкого уменьшения сопротивления этого участка в диэлектрике. Процесс нарастания тепла будет продолжаться до тех пор, пока не произойдет тепловое разрушение материала (расплавление, науглероживание) по всей его толщине — по ослабленному месту.

Характерными признаками теплового пробоя твердых диэлектриков являются:

  1. Пробой наблюдается в месте наихудшего теплоотвода от диэлектрика в окружающую среду.
  2. Пробивное напряжение диэлектрика снижается с повышением температуры окружающей среды (рис. 5-18).

Рис. 5-18. Зависимость пробивного напряжения твердого диэлектрика от температуры (при тепловом пробое).

Пробивное напряжение снижается с увеличением длительности приложенного напряжения (рис. 5-19).

Рис. 5-19. Зависимость пробивного напряжения твердого диэлектрика от длительности приложенного напряжения (при тепловом пробое).

  • Электрическая прочность уменьшается с увеличением толщины диэлектрика.
  • Электрическая прочность твердого диэлектрика уменьшается с ростом частоты приложенного переменного напряжения.
  • При пробое твердых диэлектриков часто наблюдаются случаи, когда до определенной температуры имеет место электрический пробой, а затем в связи с дополнительным нагревом диэлектрика наступает процесс теплового пробоя диэлектрика (рис. 5-20).

    Рис. 5-20. Зависимость пробивного напряжения от температуры для электротехнического фарфора (а — точка перехода к тепловому пробою).

    Аналогичный переход электрической формы пробоя в тепловую происходит в зависимости от времени выдержки твердого диэлектрика под напряжением.

    Согласно выводам теории теплового пробоя твердых диэлектриков (В. А. Фок, Н. Н. Семенов) можно подсчитать величину пробивного напряжения для простых электроизоляционных конструкций (пластины) по формулам

    а) для постоянного напряжения

    б) для переменного напряжения

    где — функция величины,

    — коэффициент теплоотдачи в окружающую среду; — коэффициент теплопроводности электродов, Дж/(с м °С); — коэффициент теплопроводности диэлектрика Дж/(с м °С); h — половина толщины диэлектрика, м; — толщина электрода, м; а — постоянная, характеризующая рост проводимости диэлектрика с температурой; — диэлектрическая проницаемость твердого диэлектрика (при температуре окружающей среды); — тангенс угла диэлектрических потерь твердого диэлектрика (при температуре окружающей среды); f — частота, Гц.

    По известным значениям вычисляют величину с и, воспользовавшись графиком (рис. 5-21), находят .

    Рис. 5-21. Значения функции. К расчету пробивного напряжения твердого диэлектрика при тепловом пробое (по В. А. Фоку).

    При неограниченном возрастании с величина стремится к пределу, равному 0,66.

    Источник

    Оцените статью
    Adblock
    detector