Дежурное напряжение есть остальных нет

Нет ни одного из напряжени кроме дежурки.

Здравствуйте, есть БП, проверил выпрямитель (диодный мост, высоковольтные конденсаторы), ШИМ-ку tl494 (на 8,11 есть миандра, на 5-пила). Проблема в том что когда включаешь БП в сеть 220 то работает только дежурка, остальных токов вообще нет. Проверял с включенным БП в сеть напряжение на 12 ноге, там 3.6 вольта всего. Подскажите как двигаться дальше и если возможно есть у кого то схема для этого БП (фото прикреплены) буду признателен если поделитесь. Укажу что супервизор D339.

Это читал несколько раз..может есть схема такого БП у кого. тогда бы начал по схеме гонять. резисторы проверял, транзисторы не стал проверять, т.к. есть дежурка и выпрямитель целый..если можете тыкните носом что неправильно делаю или что еще не сделал. в наличии есть осциллограф, мультиметр и источник питания до 15 вольт.

судя по марке транформаторов, дежурка на полевике 2N60 (автор сам выкладывает первичную инфу о сабже: какие транзисторы, ШИМ, электролиты и т.п.)

транзисторы не стал проверять, т.к. есть дежурка и выпрямитель целый

Тычок носом: проверка ВСЕХ транзисторов полумостового преобразователя (на радиаторе справа, фото) и резисторов с конденсаторами (обвязка наз.)

Не может быть импульсов на выходах TL494 при напряжении питания микросхемы 3,6В, минимальное питание которой 7В. Проверте ещё раз. Замените электролитический конденсатор 47мкФ на 50В по этой цепи. А Вы после подачи 220В блок включали замыканием зеленого провода на черный?

«Не может быть импульсов на выходах TL494 при напряжении питания микросхемы 3,6В, минимальное питание которой 7В.»

Я подавал напряжение 12v от внешнего источника питания на 12 вывод tl494 и смотрел живая ли микросхема (ШИМ живая, все сигналы выдает, но в цепи от переменного напряжения в 220v на 12-м выводе не больше 3.6 вольт).

» Проверте ещё раз. Замените электролитический конденсатор 47мкФ на 50В по этой цепи. А Вы после подачи 220В блок включали замыканием зеленого провода на черный?»

Понял свою глупую ошибку, действительно ps_ON не замкнул на общий провод, и питание не подавалось на tl494. Замкнул ps_on и на ШИМ-ке на 12 выводе померил напряжение, оно составило 14.57v, что в норме. заранее извиняюсь за задержку в сообщениях ))

Буду дальше проверять все элементы начиная с транзисторов, замечания о сабже понял )

Выпаял из схемы силовые транзисторы и сделал замеры мультиметром (модель транзисторов С4242 и 3-й TOBA T3866). Транзисторы c4242 мерил мультиметром в режиме проверки диодов. Измерения проводил относительно затвора, т.е. затвор->сток и затвор->исток. 1-ый транзистор показания: 639/727, второй 664/708, на транзисторе TOBA T3866 мультиметр скачет и не могу зафиксировать определенное значение, то ли мультиметр китайский с батареей севшей то ли транзистор..

Источник

Бп АТХ дежурка есть нет запуска.

Шим sc6105b на двадцать ног, на зеленом проводе 4.8 вольта, на фиолетовом 5 вольт. Нет запуска при замыкании зеленого провода на черный. Визуально были замечены вздутые конденсаторы на линии 12 и 5 вольт, также дроссель черный прожаренный. Заменил конденсаторы, протестил транзисторы, резисторы и диоды рядом с дросселем, все живые. Запуска нет. Грешу на дроссель, как протестить его на работоспособность ?

А зачем его тестировать? Он выгорел. Менять на аналогичный с донора.

Проверил дроссель на межвитковые, замыканий нет и обрыва тоже нет.
Точно такого же дохлого бп нет. Есть другие но там дроссели отличаются по количеству контактов и толщине дросселя. Есть ли какие то нюансы по подбору замены дросселя на выходе бп ?

ДГС однозначно менять! Берете ДГС с любого БП, внимательно рассматриваете на плате и определяете-где какие выхода, может надо будет переместить проводки под вашу плату. Главное — не меньше размер и не тоньше провод(может быть намотка двойным проводом). Я брал ДГС даже с АТ. Перепутаете провода ДГС, тогда возможно — блок не запустится; — блок запустится, но напряжения не будут соответствовать номинальным.

В общем взял ДГС с другого БП. Сопоставил где 12 вольтная линия где 5 вольтная и две линии идут на диоды. В общем схема соединения идентичная, просто порядок другой. Бп так и не запустился. То бишь ничего не изменилось. Может шим ?

Что за модель блока питания ?
Если будете менять дроссель (ДГС) на другой выпаянный с БП, то там количество витков и сечение проводов не особо критично.

Модель БП POWER SUPPLY ATX P4-400W по ходу 400ватт здеся нет. Выпаял микруху и проверил сопротивления на ногах относительно 15 ноги
1-440к, 2-400к, 3-615к, на 4,5,6,10,11,12,13,14,16,17,18,19 воще ничего, 7,8,9,20 -420к мерил цифровым мультиметром на пределе 2Мом. Стрелочника к сожалению нет. По ходу микруха дохлая. Ну и проверил вентилятор на бп, цельнолитая, лопасть воще не шевелится, может ли изза перегрева все это произойти ? Попробую найти замену шиму.

SG6105 вряд ли дохлая, они вообще редко ломаются. Тем более питание на неё не было завышено. А то что 4.8 вольта поступало, так это берётся с дежурки для старта, а просадка, это из за падения напряжения так как от дежурки идёт ещё диод к ней 1n4148. Ей для старта хватает того напряжения.
Надо смотреть прежде всего на перво причину. Был в блоке питания перегрев. Заменить дроссель обгоревший а также подозрительные конденсаторы. Так же в силовой части у силовых ключей должны быть два конденсатора 50вольт 1-10 микрафарад. Их автоматом под замену на 100% нормальные с хорошим ESR, а емкость от 1 до 10 мкФ это не важно, главное что бы были одинаковые. Без них (вернее если с ними что не так) БП никогда нормально работать не будет либо не запуститься.

Читайте также:  Помогает ли пилот от скачков напряжения

Источник

РЕМОНТ БП ПК – ДЕЖУРНОЕ НАПРЯЖЕНИЕ

В прошлой статье мы рассмотрели, какие действия нужно предпринять, если у нас предохранитель блока питания ATX в коротком замыкании. Это означает, что проблема где-то в высоковольтной части, и нам нужно прозванивать диодный мост, выходные транзисторы, силовой транзистор или мосфет, в зависимости от модели блока питания. Если же предохранитель цел, мы можем попробовать подсоединить шнур питания к блоку питания, и включить его выключателем питания, расположенным на задней стенке блока питания.

И вот здесь нас может поджидать сюрприз, сразу как только мы щелкнули выключателем, мы можем услышать высокочастотный свист, иногда громкий, иногда тихий. Так вот, если вы услышали этот свист, даже не пытайтесь подключать блок питания для тестов к материнской плате, сборке, или устанавливать такой блок питания в системный блок!

Дело в том, что в цепях дежурного напряжения (дежурки) стоят все те же знакомые нам по прошлой статье электролитические конденсаторы, которые теряют емкость, при нагреве, и от старости, у них увеличивается ESR, (по-русски сокращенно ЭПС) эквивалентное последовательное сопротивление. При этом визуально, эти конденсаторы могут ничем не отличаться от рабочих, особенно это касается небольших номиналов.

Дело в том, что на маленьких номиналах, производители очень редко устраивают насечки в верхней части электролитического конденсатора, и они не вздуваются и не вскрываются. Такой конденсатор не измерив специальным прибором, невозможно определить на пригодность работы в схеме. Хотя иногда, после выпаивания, мы видим, что серая полоса на конденсаторе, которой маркируется минус на корпусе конденсатора, становится темной, почти черной от нагрева. Как показывает статистика ремонтов, рядом с таким конденсатором обязательно стоит силовой полупроводник, или выходной транзистор, или диод дежурки, или мосфет. Все эти детали при работе выделяют тепло, которое пагубно сказывается на сроке работы электролитических конденсаторов. Дальнейшее объяснять про работоспособность такого потемневшего конденсатора, думаю будет лишним.

Если у блока питания остановился кулер, из-за засыхания смазки и забивания пылью, такой блок питания скорее всего потребует замены практически ВСЕХ электролитических конденсаторов на новые, из-за повышенной температуры внутри блока питания. Ремонт будет довольно муторным, и не всегда целесообразным. Ниже приведена одна из распространенных схем, на которой основаны блоки питания Powerman 300-350 ватт, она кликабельна:

Схема БП АТХ Powerman

Давайте разберем, какие конденсаторы нужно менять, в этой схеме, в случае проблем с дежуркой:

Итак, почему же нам нельзя подключать блок питания со свистом к сборке для тестов? Дело в том, что в цепях дежурки стоит один электролитический конденсатор, (выделено синим) при увеличении ESR которого, у нас возрастает дежурное напряжение, выдаваемое блоком питания на материнскую плату, еще до того, как мы нажмем кнопку включения системного блока. Иными словами, как только мы щелкнули клавишным выключателем на задней стенке блока питания, это напряжение, которое должно быть равно +5 вольт, поступает у нас на разъем блока питания, фиолетовый провод разъема 20 Pin, а оттуда на материнскую плату компьютера.

В моей практике были случаи, когда дежурное напряжение было равно (после удаления защитного стабилитрона, который был в КЗ) +8 вольт, и при этом ШИМ контроллер был жив. К счастью блок питания был качественный, марки Powerman, и там стоял на линии +5VSB, (так обозначается на схемах выход дежурки) защитный стабилитрон на 6.2 вольта.

Почему стабилитрон защитный, как он работает в нашем случае? Когда напряжение у нас меньше, чем 6.2 вольта, стабилитрон не влияет на работу схемы, если же напряжение становится выше, чем 6.2 вольта, наш стабилитрон при этом уходит в КЗ (короткое замыкание), и соединяет цепь дежурки с землей. Что нам это дает? Дело в том, что замкнув дежурку с землей, мы сохраняем тем самым нашу материнскую платы от подачи на нее тех самых 8 вольт, или другого номинала повышенного напряжения, по линии дежурки на материнку, и защищаем материнскую плату от выгорания.

Но это не является 100% вероятностью, что у нас в случае проблем с конденсаторами сгорит стабилитрон, есть вероятность, хотя и не очень высокая, что он уйдет в обрыв, и не защитит тем самым нашу материнскую плату. В дешевых блоках питания, этот стабилитрон обычно просто не ставят. Кстати, если вы видите на плате следы подгоревшего текстолита, знайте, скорее всего там какой-то полупроводник ушел в короткое замыкание, и через него шел очень большой ток, такая деталь очень часто и является причиной, (правда иногда бывает, что и следствием) поломки.

После того, как напряжение на дежурке придет в норму, обязательно поменяйте оба конденсатора на выходе дежурки. Они могут придти в негодность из-за подачи на них завышенного напряжения, превышающего их номинальное. Обычно там стоят конденсаторы номинала 470-1000 мкф. Если же после замены конденсаторов, у нас на фиолетовом проводе, относительно земли появилось напряжение +5 вольт, можно замкнуть зеленый провод с черным, PS-ON и GND, запустив блок питания, без материнской платы.

Если при этом начнет вращаться кулер, это значит с большой долей вероятности, что все напряжения в пределах нормы, потому что блок питания у нас стартанул. Следующим шагом, нужно убедиться в этом, померяв напряжение на сером проводе, Power Good (PG), относительно земли. Если там присутствует +5 вольт, вам повезло, и остается лишь замерить мультиметром напряжения, на разъеме блока питания 20 Pin, чтобы убедиться, что ни одно из них не просажено сильно.

Как видно из таблицы, допуск для +3.3, +5, +12 вольт – 5%, для -5, -12 вольт – 10%. Если же дежурка в норме, но блок питания не стартует, Power Good (PG) +5 вольт у нас нет, и на сером проводе относительно земли ноль вольт, значит проблема была глубже, чем только с дежуркой. Различные варианты поломок и диагностики в таких случаях, мы рассмотрим в следующих статьях. Всем удачных ремонтов! С вами был AKV.

Источник

Возможные причины неисправности и ремонт компьютерного блока питания

Практически каждый пользователь ПК сталкивался с неприятной ситуацией, когда при включении компьютера не запускается блок питания. Вариантов всего два – замена либо восстановление работоспособности. Если выбран второй путь, лучше не нарабатывать собственный опыт методом проб и ошибок, а ознакомиться с накопленными другими специалистами материалами.

Читайте также:  Какое напряжение должен выдавать генератор шевроле круз

Схема классического блока ATX

Любой ремонт компьютерного блока питания, как электронного устройства, начинается со схемы. С приобретением опыта она становится все менее необходимой, часть неисправностей находится визуальным осмотром, другие проблемы определяются как типовые – мастер со стажем уже знает, что обычно ломается в тех или иных БП. Однако жизнь иногда подбрасывает сложные загадки, при которых без принципиальной схемы даже опытному мастеру не обойтись.

Для начинающего ремонтника принципиальная схема просто необходима. Но для поиска неисправностей прежде всего надо разобрать работу импульсного блока питания по его блок-схеме. Практически все источники собраны по одному принципу (хотя схемотехника конкретных узлов от производителя к производителю может отличаться).

Сетевое напряжение сначала поступает на фильтр. На работу источника он никакого влияния не оказывает, но этот узел необходим для защиты питающей сети от помех, генерируемых самим устройством. Дальше сетевое напряжение выпрямляется и поступает на основной инвертор, обычно выполненный на транзисторных ключах. За открывание и закрывание транзисторов отвечает схема управления. При выключенном компьютере, но поданном сетевом напряжении, она питается от схемы формирования дежурного напряжения. Это напряжение также подается на материнскую плату компьютера, запитывая участки, ответственные за запуск ПК.

На схеме не показаны узлы защиты и схема обработки сигнала от матплаты Power_ON, дающего разрешение на запуск инвертора.

Выпрямленное напряжение 220 вольт преобразовывается инвертором в импульсное частотой в несколько десятков килогерц и подается на первичную обмотку трансформатора. Во вторичных обмотках индуцируется ЭДС таким же образом, как в обычном сетевом трансформаторе. За счет высокой частоты преобразования габариты трансформатора получаются компактными, а само устройство легким.

Напряжения вторичных обмоток выпрямляются и фильтруются. С помощью цепей обратной связи осуществляется стабилизация выходного напряжения и ограничение тока.

Возможные неисправности БП и способы их устранения

Для поиска неисправностей в компьютерном БП необходим определенный набор приборов. По внешним признакам определить проблему получится далеко не всегда. Необходим, как минимум, мультиметр. Наличие осциллографа крайне приветствуется.

Перед началом диагностики блока питания надо окончательно убедиться, что проблема в нем. Для этого надо снять с материнской платы самый большой разъем (в 20 или 24 контакта), замкнуть на нем проволочной перемычкой (скрепкой) черный и зеленый провода, сымитировав сигнал запуска от материнской платы. Если блок питания запустился (это слышно по гулу вентилятора), надо лишь измерить все выходные напряжения. Если они в порядке, то причина не в БП. Если что-то пошло не так и источник не стартует, значит, не работает именно блок питания.

Предохранитель

В первую очередь надо проверить исправность предохранителя. Найти его можно на краю платы. Он находится недалеко от ввода 220 вольт.

При типовой схеме выполнения входных цепей рядом с предохранителем будут находиться такие визуально заметные элементы, как:

  • 4 диода выпрямителя;
  • синфазный дроссель (намотан в два провода на кольце);
  • высоковольтные керамические конденсаторы;
  • высоковольтные оксидные конденсаторы.

Рядом с ними и надо искать предохранитель.

Обнаружив плавкую вставку, можно попробовать определить ее целостность визуально, и, при необходимости, заменить. А лучше проверить ее тестером, даже если она выполнена в прозрачном корпусе и на вид кажется, что она вполне исправна. Перегоревший предохранитель надо заменить.

Существует мнение, что включать блок питания сразу после замены плавкой вставки нельзя, сначала надо выяснить причину перегорания. На самом деле перегорание может быть вызвано временным явлением. Например, при скачке напряжения в сети. Особенно это актуально, если во входных цепях установлен варистор (иногда он устанавливается параллельно конденсаторам высоковольтного выпрямителя, как в схеме выше). При нормальном уровне напряжения в сети он себя никак не проявляет, а при повышении напряжения сопротивление варистора резко падает, вызывая плавление предохранителя.

Другой случай – самопроизвольное перегорание плавкой вставки. Здесь также можно долго искать несуществующую проблему при ее отсутствии. Поэтому предохранитель следует заменить и попробовать включить БП еще раз. При повторном перегорании вставки следует продолжить поиск неисправности.

Варистор

Если плавкая вставка перегорает повторно, одной из причин может быть вышедший из строя варистор. Он выглядит подобно конденсатору, найти его можно также рядом с элементами входной цепи или рядом с конденсаторами высоковольтного выпрямителя.

Осмотрев элемент визуально, надо убедиться в отсутствии трещин, сколов и т.п. Если все в порядке, его надо выпаять и проверить мультиметром. Его сопротивление должно быть не менее нескольких сотен килоом. Если оно на порядки меньше или тестер вообще показывает короткое замыкание, то элемент подлежит замене.

Для полной проверки работоспособности варистора понадобятся источник регулируемого напряжения примерно до 300 вольт и амперметр. Поднимая напряжение, надо контролировать момент резкого увеличения тока. Но на работоспособность блока в штатном режиме эта проверка не повлияет, она лишь покажет, как сработает защита от повышения напряжения. Для такого тестирования поможет знание расшифровки обозначения варисторов на примере CNR-07D390K.

Серия Диаметр Форма Напряжение срабатывания Точность
Значение CNR 07 D 390 K
Расшифровка CeNtRa металлооксидные варисторы 7 мм дисковый 39*10^0=39 вольт 10%

Выпрямитель

Если предохранитель не перегорает, надо проверить работу высоковольтного выпрямителя. В режиме измерения переменного напряжения надо измерить входное напряжение (оно должно быть около 220 вольт, точки измерения указаны красными стрелками). На выходе должно быть около 310 вольт (зеленые стрелки, измерять в режиме постоянного напряжение).

Если выходное напряжение при нормальном входном значительно отличается от 310 вольт, велика вероятность, что вышел из строя один или несколько диодов (хотя не исключено, что неисправен оксидный конденсатор или варистор, включенный параллельно ему, если имеется).

Элементы надо выпаять и прозвонить в режиме проверки диодов. В одну сторону тестер должен показывать сверхвысокое сопротивление, в другую – какое-то конечное. Неисправные диоды надо заменить такими же или аналогичными.

Дежурное напряжение блока питания

Дальше надо проверить наличие дежурного напряжения. Оно служит для питания участка схемы материнской платы, ответственного за алгоритм пуска компьютера. Другое предназначение источника StandBy-питания — запитка схемы генератора импульсов БП. Проверить его надо на контакте 9 разъема материнской платы (ATX24 или ATX20). Там должно быть около 5 вольт.

Читайте также:  Падения напряжения при нагрузке блок питания

Также надо проверить наличие напряжения питания (около 12 вольт) на схеме формирования импульсов. Если она выполнена на микросхеме TL494 (очень распространенный случай), то можно измерить напряжение на 12 выводе.

Если обнаружены проблемы, то без принципиальной схемы БП не обойтись. Дежурное напряжение формируется в большинстве случаев с помощью дополнительного преобразователя, но он может быть выполнен по самым различным схемам. В качестве примера приведен участок, формирующий питание Stand By.

Генератор выполнен на транзисторе. В цепь обратной связи включена обмотка генератора. Импульсы трансформируются во вторичные обмотки, выпрямляются. На питание микросхемы идет нестабилизированное напряжение, на матплату – стабилизированное линейным регулятором. Наиболее вероятная причина нерабочего состояния такого генератора – выход из строя одного из полупроводниковых приборов (транзисторов, диодов). Обнаружить проблему можно измерением режимов полупроводников, а в случае обнаружения сомнительных значений напряжений на выводах – выпайкой и прозвонкой конкретного элемента.

Оксидные конденсаторы

Оксидные конденсаторы чаще всего выходят из строя из-за перегрева. Это может быть по причине плохо организованного отведения тепла из внутреннего пространства БП. Но чаще всего перегрев происходит из-за того, что производитель из экономии выбрал оксидные конденсаторы без достаточного запаса по напряжению.

В результате даже при незначительных скачках или при появлении выбросов электролит внутри емкости нагревается и постепенно испаряется через неплотности корпуса. Когда уровень жидкости снижается ниже определенной величины, электролит начинает кипеть, и корпус конденсатора раздувается. Это можно обнаружить визуально.

Если даже такой конденсатор еще жив, его надо немедленно менять – его часы сочтены. Замену выполняют на конденсаторы той же емкости и того же напряжения, но если позволят габариты на плате, лучше поставить элементы с большим напряжением (излишек емкости также не помешает).

Если производитель применил конденсаторы низкого качества, то в процессе эксплуатации электролит из них просто вытекает. На поверхности остаются следы коррозии. Эти элементы также подлежат немедленной замене.

Трансформатор

Если инвертор формирует импульсы, а выходных напряжений (или одного) нет, есть вероятность, что не работает импульсный трансформатор. Если он сгорел, это видно сразу по обугленной изоляции. Если он выглядит как обычно, надо иметь в виду, что в импульсном трансформаторе (и в трансформаторе драйвера транзисторных ключей) могут быть, в основном, две неисправности:

  • обрыв обмоток;
  • межвитковое замыкание обмоток.

Первый вариант маловероятен и связан, большей частью, со случайными механическими повреждениями (сорвалась отвертка во время каких-либо работ и т.п.). Если такие ситуации имеют место, надо прозвонить все обмотки (мультиметр должен показать сопротивление в несколько ом или ниже). Если есть проблема, поврежденную обмотку надо смотать, считая витки. Потом на ее место намотать обмотку таким же проводом с таким же количеством витков.

Межвитковое замыкание более вероятно — оно может возникнуть из-за некачественной изоляции провода, но его обнаружить значительно сложнее. Для этого нужен измеритель индуктивности или тестер с таким режимом, а также заведомо исправный трансформатор того же типа. Замеряя индуктивность обмоток у эталонного и испытуемого приборов, можно выявить место межвиткового замыкания. Отремонтировать такой трансформатор сложнее, потому что замкнувшаяся обмотка может быть не верхней, и, чтобы до нее добраться, надо будет сматывать все. Проще заменить узел на аналогичный.

Диоды

Если импульсы на вторичной обмотке трансформатора присутствуют, а выходных напряжений нет, целесообразно проверить диоды выпрямителя соответствующего напряжения.

Диоды выпрямителей выходных напряжений проверяются так же, как и диоды выпрямителей – прозвонкой в прямом, а потом в обратном направлениях. При поиске места расположения выпрямительных элементов надо иметь в виду, что, в зависимости от тока нагрузки, они могут быть в различном исполнении:

  • дискретные диоды;
  • дискретные диоды на радиаторе;
  • сборки из 2 или 4 диодов.

Если есть схема БП, то перед поиском диодов на плате этот момент лучше уточнить.

Прочие проблемы

Еще причинами неисправности БП может быть неисправность мощных транзисторов в ключах инвертора. Если импульсы на базы (затворы) триодов приходят, а в цепи коллекторов (стоков) их нет, транзисторы надо выпаять и прозвонить. Биполярные триоды прозваниваются, как два диода с общим выводом.

Для тестирования MOSFET лучше собрать несложную схему.

Также надо проверить наличие сигнала Power_good на 8 контакте разъема материнской платы. Может получиться так, что все напряжения в порядке, но неисправна схема формирования данного сигнала. Компьютер это воспримет, как неисправность БП.

Как правильно разбирать блок питания

Разборка компьютерного блока питания должна производиться с соблюдением всех мер предосторожности. В первую очередь, надо отключить сетевой шнур от источника питания и подождать несколько секунд для разряда конденсаторов.

Для высоковольтных оксидных конденсаторов выпрямителя этих мер недостаточно. Их надо разрядить с помощью резистора или лампочки на 220 вольт. Во время разрядки надо следить, чтобы случайно не прикоснуться к выводам конденсатора, припаянным к контактным площадкам или к неизолированной части выводов разрядного элемента.

Проверка напряжения после ремонта

После ремонта надо проверить наличие выходных напряжений. Для этого надо установить перемычку между черным и зеленым проводниками на разъеме ATX и подключить к выходным разъемам эквиваленты нагрузки – без них выходные напряжения могут быть выше номинальных. Лучше сделать это до подачи сетевого напряжения, потому что некоторые схемы без нагрузки просто не запустятся.

В качестве балласта можно применить резисторы или автомобильные лампы накаливания на 12 вольт. Нагрузка должна обеспечивать выходной ток в пределах 10..90% от номинала.

Для наглядности рекомендуем серию тематических видеороликов.

Починить компьютерный блок питания несложно, имея приборы и достаточную квалификацию. Но ремонт БП компьютера своими руками считается нецелесообразным, так как на поиск неисправности уходит достаточно много времени. Существует мнение, что проще купить новый узел, потому что к моменту выхода БП из строя компьютер либо модернизирован, либо требует апгрейда в ближайшем будущем. Поэтому нужен новый БП повышенной мощности. Изрядная доля истины в таком подходе есть, но иногда требуется именно ремонт. Также восстановленный блок питания можно переделать в лабораторный БП или в зарядное устройство. Материалы обзора в этом случае будут полезны.

Источник

Оцените статью
Adblock
detector