Диапазон напряжения питания по шлейфу сигнализации

Шлейф сигнализации

Определение. Виды шлейфов. Принцип построения.

Безусловно, качество монтажных работ при создании системы сигнализации играет важную роль в том, как надежна будет система, но и то каким образом сформированы сами шлейфы при выполнении проекта, вносит немаленькую лепту в отсутствие “ложняка” и эффективность сигнализации.

Определение шлейфа сигнализации

Если Вас интересует точное определение шлейфа сигнализации, то нужно обратиться к ГОСТам. Мне известно три:

ГОСТ 26342-84 Средства охранной, пожарной и охранно-пожарной сигнализации. Типы, основные параметры и размеры

Шлейф охранной (пожарной, охранно-пожарной) сигнализации – Электрическая цепь, соединяющая выходные цепи охранных (пожарных, охранно-пожарных) извещателей, включающая в себя вспомогательные (выносные) элементы (диоды, резисторы и т.п.) и соединительные провода и предназначенная для выдачи на приемно-контрольный прибор извещений о проникновении (попытке проникновения), пожаре, неисправности, а в некоторых случаях и для подачи электропитания на извещатели.

ГОСТ Р 50776-95 Системы тревожной сигнализации. Часть 1. Общие требования. Раздел 4. Руководство по проектированию, монтажу и техническому обслуживанию.

Шлейф охранной сигнализации – Электрическая цепь, соединяющая выходные цепи охранных извещателей, включающая в себя вспомогательные элементы и соединительные провода и предназначенная для выдачи на приемно-контрольный прибор извещений о проникновении и неисправности, а в некоторых случаях и для подачи электропитания на охранные извещатели.

ГОСТ 52436-2005 Приборы приемно-контрольные охранной и охранно-пожарной сигнализации. Классификация. Общие технические требования и методы испытаний.

п. 3.11 Шлейф сигнализации безадресный (ШСБ): Шлейф сигнализации, соединяющий ППК с извещателями безадресного типа, информация о состоянии которых передается на ППК путем замыкания или размыкания контактов выходных реле, электронных ключей или изменением иных параметров извещателей.

п. 3.12 Шлейф сигнализации адресный (ШСА) (канал связи адресный (КСА)): Электрическая цепь, соединяющая ППК с адресными устройствами и предназначенная для осуществления цифрового (или аналогового) обмена данными между ППК и адресными устройствами.

Эти определения отличаются небольшими нюансами, но в целом понятно, что шлейф сигнализации это совокупность извещателей и выносных элементов, соединенных проводом. Его задача сообщать приемно-контрольному прибору о тревогах и неисправностях.

Принципиальная схема шлейфа сигнализации

В самом простом случае принципиальная схема выглядит следующим образом:

При постановке на охрану должна образоваться замкнутая электрическая цепь, т.е. контакты извещателей Хнз должны замкнуться, а Хнр – разомкнуться. В дежурном режиме в шлейфе присутствует напряжение (обычно 17-27 В) и протекает электрический ток (2-3 мА). ППК контролирует суммарное сопротивление шлейфа, при выходе величины сопротивления за установленные пределы, ППК формирует соответствующее извещение. Суммарное потому, что кроме оконечного сопротивления (Rок) присутствует сопротивление проводов и контактов реле. Сопротивление проводов и контактов не должно превышать для разных типов приборов величин от 200 Ом до 1 кОм.

В адресных шлейфах тревожные извещения формируются при резком изменении токопотребления извещателей.

Виды шлейфов сигнализации

Классификация шлейфов сигнализации выглядит следующим образом:

  • знакопостоянные шлейфы – протекает постоянное напряжение, самый популярный вид, используются в охранной и пожарной сигнализации;
  • знакопеременные шлейфы – в шлейфе переменное напряжение, применяются в пожарных ППК;
  • шлейфы с пульсирующим напряжением (конденсаторные шлейфы) – также для пожарной сигнализации;
  • адресные или адресно-аналоговые шлейфы – охранная и пожарная сигнализация;
  • искробезопасные шлейфы – охранная и пожарная сигнализация (искробезопасность достигается использованием искробезопасных извещателей или барьеров искрозащиты на входе шлейфа во взрывоопасное помещение.

Принцип построения шлейфа сигнализации

Чтобы произвести посчитать стоимость работ, произвести монтаж необходимо выполнить проект сигнализации.

Ниже приведена структурная схема адресного и безадресного шлейфов сигнализации

Структурная схема безадресного шлейфа сигнализации Структурная схема адресного шлейфа сигнализации

Как видите они мало чем отличаются: в адресном шлейфе нет оконечного элемента и он выполнен кольцевым (но это необязательно для охранной сигнализации).

В более детальном виде подключение извещателей в шлейф сигнализации обычно изображают на схеме электрических подключений:

Схема электрических подключений безадресного шлейфа сигнализации Схема электрических подключений адресного шлейфа сигнализации

Прошу не кидать в меня камни за то, что на схеме отсутствую некоторые элементы (соединительные коробки), но в данном случае важен только принцип. Подробные схемы приведу в другой статье.

Параметры шлейфа сигнализации

Чтобы шлейф сигнализации исправно функционировал и Заказчик не страдал бы от ложных срабатываний и был уверен в надежности системы, при проектировании необходимо учитывать следующие факторы:

  • максимальное количество извещателей – актуально при использовании извещателей пожарной сигнализации и охранных извещателей с питанием по шлейфу. Учитывая, что ток в шлейфе небольшой нужно рассчитать количество применяемых извещателей исходя из этого показателя;
  • максимальная длина шлейфа – зависит от суммарного сопротивления шлейфа, но в основном от применяемого кабеля. Сопротивление шлейфа без учета оконечного элемента не должно превышать параметров, указанных в паспорте на приемно-контрольный прибор;
  • сопротивление изоляции шлейфа – определено нормативными документами. Лучше всего использовать кабель проверенных производителей;
  • защита от повреждений – необходимо предусматривать, если шлейф может быть поврежден в процессе эксплуатации;
  • способ прокладки – зависит от конкретного помещения, от его отделки (можно прокладывать разными способами – в штробах, за подвесным потолком, в трубах в полу и пр.);
  • помехозащищенность – прокладка на расстоянии не менее 50 см от сетей электропитания. В основном конечно данный пункт на совести монтажников (но данный момент должен быть прописан в проекте), а если Вы проектируете в BIM, то у Вас есть возможность учесть этот момент;
  • тип кабеля для построения шлейфов – для пожарной сигнализации, только – негорючий.

Вывод

Принцип работы шлейфа сигнализации довольно прост, но требуются знания и опыт, чтобы его правильно построить. От этого зависит насколько надежной и эффективной будет вся система сигнализации.

Если статья показалась Вам интересной и/или полезной, поделитесь ею в социальных сетях.

Источник

ШЛЕЙФ ОХРАННОЙ СИГНАЛИЗАЦИИ

Давайте разберемся что такое шлейф сигнализации (ШС) и как правильно его организовать. Начнем с того, что охранный шлейф представляет собой соединительную линию (электрическую цепь), объединяющую различные датчики сигнализации (ДС) или извещатели — в контексте данной статьи это синонимы.

Кроме того, в шлейфе присутствует оконечное устройство (ОУ), которое согласует его с приемно-контрольным прибором (ПКП).

В качестве оконечного устройства могут выступать:

  • резисторы;
  • конденсаторы;
  • диоды.

Что именно устанавливается в конце шлейфа зависит от конкретной модели ПКП. Стоит заметить, что в системах охранной сигнализации чаще всего используются резисторы, поэтому будем ориентироваться на этот вариант. Структурная схема шлейфа приведена на рисунке 1.

Читайте также:  Скорость пропуска поездов при разрядке температурных напряжений

Я сразу нарисовал все возможные типы датчиков, их работу мы сейчас рассмотрим, но в реальной ситуации используется, как правило, один вариант подключения и извещатели с одинаковой тактикой формирования тревожного извещения.

Возможны и комбинации различных подключений, но они встречаются достаточно редко. Теперь давайте перейдем к рассмотрению основных типов шлейфов и принципа их действия.

ТИПЫ ШЛЕЙФОВ СИГНАЛИЗАЦИИ

1. ШС с датчиками, работающими «на размыкание».

В охранной сигнализации очень часто встречающийся вариант. При срабатывании извещателя электрическая цепь разрывается, ток в шлейфе падает до нулевого значения. То же самое произойдет при отсутствии питания на извещателе. А вот в случае неисправности датчика возможны два варианта:

  • контакты разомкнутся;
  • останутся замкнутыми даже при обнаружении нарушителя.

С первым случаем все ясно и просто — прибор сработает и неисправность таким образом заявит о себе. Второй вариант опасен тем, что обнаружить его можно только при полной проверке работоспособности датчика, которую каждый день никто не делает. Утешает только что такие случаи редки, но, тем не менее, они бывают.

2. ШС с датчиком, работающим на «замыкание».

Отличие от первого варианта разве что в схеме подключения и в том, что при срабатывании шлейф замыкается. В охранной сигнализации используется редко, по крайней мере я с таким способом не сталкивался.

3. Использование извещателя с питанием по шлейфу.

Пусть не часто, но такие датчики используются. Если в первых двух случаях напряжение подается по отдельной линии, то здесь извещатель работает от напряжения, подаваемого на ШС приемно-контрольным прибором. В этом случае сигнал тревога формируется увеличением потребления ДС тока, что отслеживается ПКП.

При этом количество подключаемых датчиков может быть ограничено несколькими штуками. Конкретная величина для различных их типов должна указываться в паспорте охранного прибора (равно как и возможность использования такого варианта).

4. Адресный шлейф сигнализации.

Если до сих пор мы рассматривали случаи, когда осуществлялся токовый контроль ШС, то при использовании адресных извещателей информации об их состоянии передается в цифровом виде. Соответственно информативность системы сигнализации при этом возрастает. ДС может диагностировать свое состояние и передавать его на контрольную панель.

ПАРАМЕТРЫ И НЕИСПРАВНОСТИ

Поскольку шлейф охранной сигнализации является электрической цепью, то и характеризуется он такими электрическими параметрами как ток, напряжение и сопротивление. Причем первые два являются вторичными, а работоспособность ШС зависит от сопротивления, которое определяет три основных его состояния:

  • «норма»;
  • «обрыв»;
  • «замыкание».

Стоит немного пояснить принцип работы связки ПКП-ШС-ОУ.

Прибор подает на шлейф напряжение, поскольку в нормальном состоянии цепь замкнута в ней возникает электрический ток. Его значение характеризует состояние ШС. Нормальные пределы величины тока задаются оконечным устройством. Отклонение в ту или иную сторону вызывает срабатывание сигнализации.

Сопротивление самого шлейфа, а туда входят также сопротивления переходных контактов в датчиках, определяет максимально допустимые отклонения. При коротком замыкании всего или части ШС (одна из неисправностей) происходит увеличение тока потребления, а обрыв — к его исчезновению. В этом и заключается суть токового контроля.

Таким образом есть еще один критичный параметр — сопротивление утечки между проводами шлейфа, поскольку он является двухпроводной линией, или «землей» и одним из проводников. Эта характеристика указана в паспорте ПКП, но лучше будет если ее значение составит порядка 1 мОм. Хотя многие приборы работают при утечках в несколько десятков кОм.

В завершение один иногда встречающийся вопрос: какова максимальная длина шлейфа охранной сигнализации? Ответ — любая при которой обеспечиваются рассмотренные выше электрические параметры.

© 2014 — 2021 г.г. Все права защищены.

Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и официальных документов

Источник

Анализ параметров шлейфа ПС

Принципы работы неадресных приемно-контрольных приборов и основные варианты построения уже обсуждались в отраслевой печати. В основном проводился анализ помехоустойчивости при использовании различных схемотехнических решений. Рассмотрим более подробно электрические характеристики шлейфов двухпороговых ППКП при работе с пожарными извещателями различного типа.

Требования по согласованию неадресных ППКП с неадресными пожарными извещателями изложены в общем виде В ГОСТ Р 53325-2009 «Техника пожарная. Технические средства. Пожарной автоматики. Общие технические требования. Методы испытаний». В п. 4.2.1.1 указано, что «извещатели пожарные, взаимодействующие с прибором приемно-контрольным пожарным, должны обеспечивать информационную и электрическую совместимость с ним». В п. 4.2.1.3 содержится требование: «электрические характеристики извещателей пожарных (напряжение и токи дежурного режима и режима тревожного извещения) должны быть установлены в технической документации (ТД) на извещатели пожарные конкретных типов и должны соответствовать электрическим характеристикам шлейфа пожарной сигнализации пожарного приемно-контрольного прибора, с которым предполагается использовать извещатели пожарные».

В технической документации на приемно-контрольные приборы по п. 7.2.1.5 ГОСТ Р 53325 — 2009 должны быть указаны «диапазоны тока в неадресном шлейфе сигнализации, в том числе максимальный ток питания извещателей, при котором ППКП регистрирует все предусмотренные виды извещений и диапазон питающих напряжений». Как правило, в документации на ППКП приводится максимально допустимый ток потребления активных извещателей, уровень ограничения тока шлейфа в режиме «Пожар», достаточно часто — диапазон сопротивлений шлейфа, соответствующий различным режимам, но значения напряжений и токов шлейфа обычно не указываются, что затрудняет оценку совместимости конкретного типа извещателей и ППКП. Причем в настоящее время по экономическим причинам используются практически исключительно только так называемые двухпороговые ППКП с идентификацией сработки 1-го и 2-го извещателя, что и определило появление проблемы согласования извещателей с ППКП [1].


Методы контроля состояния пожарных шлейфов

Различные варианты построения пожарных приемно-контрольных приборов с точки зрения обеспечения надежности подробно рассмотрены в статье В. Баканова [2]. В статье А. Пинаева и М. Никольского [3] существующие методы контроля состояния неадресных шлейфов сведены двум типам:

  • контроль по напряжению шлейфа;
  • контроль по току шлейфа.

Упрощенная структура шлейфа может быть представлена в виде источника напряжения UХХ, порядка 12 — 24 В, токоизмерительного резистора RППКП, значение которого для различных приборов может изменяться в широких пределах: от сотни Ом до нескольких кОм и устройства обработки информации с установленными порогами, соответствующими границам режимов шлейфа (рис. 1). В этом плане ППКП можно разделить на приборы с высокоомным выходом шлейфа, где токоизмерительный резистор одновременно выполняет роль токоограничивающего резистора, обеспечивающего ток короткого замыкания шлейфа на уровне порядка 20 мА, и с низкоомным выходом, порядка 100 Ом, где для ограничения тока шлейфа используется дополнительная схема. Значение напряжения UХХ соответствует напряжению шлейфа без нагрузки, т.е. в режиме холостого хода. Для контроля обрыва шлейфа устанавливается оконечный резистор RОК, обычно в пределах от 3,3 до 9,1 кОм, в зависимости от типа ППКП. Состояние шлейфа ППКП может определяться по току шлейфа, посредством измерения напряжения на токоизмерительном резисторе. По каким-то причинам в документации на ППКП обычно указывается только сопротивление шлейфа в различных режимах. В общем случае сопротивление шлейфа RШС пропорционально отношению напряжения шлейфа к напряжению на токоизмерительном резисторе: RШС = RППКПUШС / URППКП. А так как обычно используется стабилизированный источник, то сумма напряжений UШС + URППКП постоянна и равна напряжению UХХ и режим шлейфа определяется по любой из этих величин.

Читайте также:  Как определить направление падения напряжения

Рис. 1. ППКП контролирует ток шлейфа по напряжению на резисторе

Рассмотрим несколько примеров пожарных шлейфов при различных значениях напряжения UХХ, токоизмерительного резистора RППКП и оконечного резистора RОК. Определим примерные пороги по току, по напряжению и, исходя из условия однозначно определения режима шлейфа в соответствии с требованиями п. 7.2.1.5 ГОСТ Р 53325 — 2009, оценим допустимые токи потребления активных извещателей в дежурном режиме.

Рис. 2. Комбинированный шлейф с двойной сработкой на замыкание и на размыкание

Комбинированный шлейф, т.е. включены извещатели с нормально разомкнутыми контактами и с нормально замкнутыми контактами, при этом определяется сработка 1-го и 2-го извещателя на замыкание и на размыкание (рис. 2). Этот тип шлейфа имеет максимальное число режимов 7:

  • обрыв шлейфа;
  • сработка двух извещателей на размыкание – «Пожар 2»;
  • сработка одного извещателя на размыкание – «Пожар 1»;
  • дежурный режим;
  • сработка одного извещателя на замыкание – «Пожар 1»;
  • сработка двух извещателей на замыкание – «Пожар 2»;
  • короткое замыкание шлейфа,
    и соответственно 6 порогов.

В качестве исходных характеристик зададим типовые параметры: напряжение разомкнутого шлейфа UХХ равным 20 В, токоограничивающий резистор шлейфа RППКП возьмем 1 кОм, чтобы обеспечить ограничение тока короткого замыкания на уровне 20 мА, оконечный резистор RОК 7,5 кОм ± 5%, максимальное сопротивление кабеля шлейфа RКАБ 220 Ом и минимальное сопротивление утечки RУТ между проводами шлейфа 50 кОм. Тогда номинальный ток шлейфа в дежурном режиме составит Iдеж = UХХ /( RППКП + RОК) = 20 В / (1+7,5) кОм = 2,35 мА. Определим максимальный разброс параметров шлейфа, т.е. при минимальном значении оконечного резистора RОК — 5% будем учитывать сопротивление утечки шлейфа 50 кОм, а при максимальном значении RОК + 5% будем учитывать сопротивления кабеля 220 Ом. С учетом этих допущений сопротивление шлейфа может изменяться в пределах 6,24 кОм ? 8,1 кОм, соответственно ток дежурного режима может быть в диапазоне от 2,2 мА до 2,76 мА. Таким образом, разброс тока дежурного режима превышает 0,5 мА! Соответственно напряжение шлейфа в дежурном режиме на выходе ППКП может быть в пределах 17,24 В ?17,8 В.

Извещатели с нормально разомкнутыми контактами включаем в шлейф с дополнительными резисторами RДОП = 1,6 кОм ±5%, извещатели с нормально замкнутыми контактами с балластными резисторами RБАЛ = 4,7 кОм ±5% (рис. 2). Параметры шлейфа для минимального, номинального и максимального сопротивления шлейфа для различных режимов приведены в Таблице 1.

Обычно в документации на ППКП приводятся границы сопротивления шлейфа, соответствующие различным режимам, однако рассмотрение соответствующих им токов и напряжений дает дополнительную информацию, позволяет оценить помехоустойчивость и определить максимально допустимый ток потребления извещателей в дежурном режиме. Данные таблицы 1 показывают, что области сработки одного и двух извещателей на размыкание пересекаются, при сопротивлении утечки между проводами шлейфа 50 кОм и при сработке двух извещателей ток шлейфа будет соответствовать номинальному току при сработке одного извещателя. Т.е. прибор не сможет идентифицировать сработку второго извещателя! Кроме того, необходимо отметить, что даже номинальные токи и напряжения шлейфа, без учета кабеля, различаются незначительно при сработке извещателей на размыкание. При сработке первого извещателя ток шлейфа снижается на 0,83 мА, а при сработке второго извещателя всего лишь на 0,4 мА.

Теперь определим допустимый ток потребления извещателей в дежурном режиме. Александр Зайцев предложил ввести термин, который ясно определяет возникающую проблему: «ток обрыва шлейфа». Действительно, в соответствии с требованиями ГОСТ Р 53325 — 2009 п. 7.2.1.1 «ППКП должны обеспечивать…
автоматический контроль целостности линий связи с внешними устройствами (ИП и другими техническими средствами), световую и звуковую сигнализацию о возникшей неисправности». В общем случае обрыв шлейфа идентифицируется по снижению тока шлейфа при отключении оконечного резистора. При этом необходимо учитывать ток потребления пожарных извещателей и сопротивление утечки между проводами шлейфа. Какой ток потребления извещателей желательно обеспечить? Если одним шлейфом защищается до 10 помещений, по 3 извещателя в помещении, при токе дежурного режима извещателя порядке 0,1 мА необходимо обеспечить ток 3 мА. Однако в соответствии с данными Табл. 1, если обрыв шлейфа произойдет в конце шлейфа и величина тока составит 2 — 3 мА, ППКП останется в дежурном режиме и не обнаружит неисправность. Если при обрыве шлейфа отключится примерно половина извещателей, а оставшаяся часть извещателей будет потреблять примерно 1,5 мА, прибор выдаст сигнал «Пожар 1», т.к. эта величина тока шлейфа соответствует сработке одного извещателя на размыкание (рис. 3). Соответственно, если обрыв шлейфа определит ток извещателей порядка 1,2 мА, то прибор выдаст сигнал «Пожар 2»! Какой же «ток обрыва» в рассматриваемом случае? Естественно он должен быть меньше тока шлейфа, соответствующего формированию сигнала «Пожар 2» при активизации двух извещателей с нормально замкнутыми контактами. Исходя из данных, приведенных в таблице 1, можем определить «ток обрыва шлейфа», при котором будет формироваться сигнал «Неисправность» меньше 1 мА, а с учетом тока утечки шлейфа, который может достигать 0,4 мА, максимально допустимый ток потребления извещателей должен быть снижен примерно до 0,5 мА.

Рис. 3. Режимы комбинированного шлейфа

Но при наличии в шлейфе извещателей на размыкание в нашем случае подключение извещателей с током потребления 0,5 мА тоже не допустимо. Номинальный ток шлейфа в режиме «Пожар 2», соответствующий сработке двух извещателей с нормально замкнутыми контактами равный 1,12 мА увеличится до 1,62 мА, что соответствует режиму «Пожар 1». Т.е. прибор в принципе не допускает одновременного включения в шлейф нормально замкнутых извещателей и токопотребляющих извещателей.

Для устранения явных недостатков шлейфа, приведенного в Примере 1, на практике в ППКП используют два или три типа шлейфа: шлейф только с нормально замкнутыми извещателями (рис. 4) и шлейф только с нормально разомкнутыми извещателями (рис. 5) с определением сработки двух извещателей, иногда еще допускается комбинированный шлейф с различным типами извещателей, но с определением сработки только одного извещателя и с минимальным током извещателей в дежурном режиме. В этом случае для шлейфа активными извещателями, при тех же исходных параметрах ППКП, «ток обрыва» не должен попадать в область, отведенную для тока дежурного режима, и с учетом тока утечки максимальный ток потребления активных извещателей мог бы быть увеличен примерно до 1,5 мА. Однако граница между режимами «Пожар 1» и «Пожар 2» составляет всего лишь 1 мА и чтобы при сработке одного извещателя формировался сигнал «Пожар 1», а не «Пожар 2», ток извещателей должен быть соответственно менее 1 мА.

Читайте также:  Схема двухстороннего ограничителя напряжений

Рис. 4. Шлейф с нормально замкнутыми извещателями

Рис. 5. Шлейф с нормально разомкнутыми извещателями

В комбинированном шлейфе обычно выбирается примерно двойная величина балластного сопротивления, например, Rбал=10 кОм, и в два раза меньшее дополнительное сопротивление, соответственно увеличивается дельта между током дежурного режима и режима «Пожар» при сработке нормально замкнутого извещателя (Табл. 2), однако «ток обрыва» остается тем же, что и в Примере 1, следовательно, ток активных извещателей так же должен быть менее 0,5 мА.

Иногда встречается рекомендация компенсировать ток потребления активных извещателей путем увеличения оконечного резистора. Очевидно в комбинированном шлейфе, при токе шлейфа в режиме пожар от извещателя на размыкание порядка 1 мА ни о каких компенсациях речи быть не может. В шлейфе с дымовыми извещателями компенсация повышения тока большого числа извещателей за счет снижения тока оконечного резистора позволяет «уложиться» в пороги дежурного режима и режимов «Пожар 1», «Пожар 2», но если при этом возникает превышение «тока обрыва», прибор не обнаружит обрыв шлейфа.

Изменим параметры шлейфа, для повышения тока дежурного режима увеличим максимальное напряжение шлейфа UХХ до 26 В, оконечный резистор зададим 3,9 кОм±5%, а токоограничивающий резистор шлейфа RППКП возьмем 1,2 кОм. При этом номинальный ток шлейфа в дежурном режиме увеличится до 5,1 мА. Ток короткого замыкания шлейфа будет менее 22 мА, что обеспечивает возможность подключения извещателей без токоограничивающих резисторов. Для формирования сигналов «Пожар 1, 2» извещатели с нормально разомкнутыми контактами включаем в шлейф с дополнительными резисторами 2,7 кОм±5%, извещатели с нормально замкнутыми контактами с балластными резисторами 2,2 кОм±5%. Максимальное сопротивление кабеля шлейфа и минимальное сопротивление утечки оставим те же, что и в первых двух примерах RКАБ = 220 Ом, RУТ = 50 кОм. Результаты расчетов приведены в таблице 3.

Снижение примерно в 2 раза номинала оконечного резистора определило значительно меньшее влияние на величину сопротивление шлейфа параллельного подключения сопротивления утечки кабеля, но соответственно увеличилось влияние последовательно включенного сопротивления кабеля. Определим» ток обрыва шлейфа» для этого случая. Минимальный ток дежурного режима равен 4,71 мА вроде бы позволяет предположить больший ток потребления извещателей, по сравнению с рассмотренными ранее примерами, однако здесь появляется другое ограничение. Максимальный ток дежурного режима без учета тока потребления активных извещателей может достигать 5,59 мА, а минимальный ток шлейфа при сработке первого извещателя 6, 91 мА. Следовательно, чтобы не возникали ложные сигналы «Пожар 1» в дежурном режиме, максимальный ток извещателей должен быть менее 1 мА. С другой стороны здесь необходимо отметить, что максимальный ток шлейфа в режиме «Пожар 1» равен 9,73 мА, а минимальный ток шлейфа в режиме «Пожар 2» равен 8,8 мА (Табл. 3), т.е. в данном примере возможно формирование ложного сигнала «Пожар 2» при сработке одного извещателя, либо при сработке второго извещателя прибор может оставаться в режиме «Пожар 1». Области режимов «Пожар 1» и «Пожар 2» пересекаются, что не позволяет корректно выбрать пороги даже при отсутствии токопотребляющих извещателей (рис. 6). Для шлейфа с нормально замкнутыми извещателями области режимов «Пожар 1» и «Пожар 2» хотя и не пересекаются, но их границы практически совпадают.

Кроме того, при оценке стабильности работы прибора следует так же учитывать нестабильность параметров приборов, температурные уходы порогов, дрейф в процессе старения и т.д. Очевидно сложность построения двухпороговых приборов определила разработку ППКП с адаптивными порогами, что позволяет в какой то мере учесть исходные параметры каждого шлейфа. Однако возможности автокомпенсации ограничены и не все можно скомпенсировать, например, разброс номиналов резисторов RДОП и RБАЛ у каждого извещателя, сопротивление кабеля и сопротивление утечки кабеля имеют распределенный характер и их влияние зависит от расположения извещателя в шлейфе. В наилучшем случае можно обеспечить номинальные параметры шлейфа, которые приведены в таблицах 1 — 3.

В заключение еще раз необходимо отметить, что в документации на ППКП обычно приводятся только диапазоны сопротивления шлейфа для различных режимов, несмотря на то, что в п. 7.2.1.5 ГОСТ Р 53325-2009 указано, что «ППКП должны иметь следующие показатели назначения, численные значения которых приводятся в технической документации (ТД) на ППКП конкретного типа:

— диапазоны тока в неадресном шлейфе сигнализации, в том числе максимальный ток питания извещателей, при котором ППКП регистрирует все предусмотренные виды извещений». Отсутствие в документации информации о режимах ППКП в зависимости от тока шлейфа не позволяет корректно определить допустимый ток извещателей в дежурном режиме и оценить совместимость прибора с пожарными извещателями различного типа, особенно с дымовыми пожарными извещателями с нелинейной вольт-амперной характеристикой, но это тема отдельной статьи.

На практике для проверки обеспечения «тока обрыва шлейфа» можно рекомендовать достаточно простой способ: отключить последний пожарный извещатель, в базе которого установлен оконечный резистор, и проконтролировать формирование сигнала «Неисправность» на ППКП. Если сигнал «Неисправность» отсутствует или формируется сигнал «Пожар», значит ток дежурного режима извещателей превышает «ток обрыва шлейфа». В этом случае необходимо по одному отключать извещатели до появления сигнала «Неисправность». После этого отключить еще несколько извещателей для обеспечения технологического запаса, а базы снятых извещателей подключить к дополнительному шлейфу или к дополнительным шлейфам, если количество снятых извещателей больше, чем число оставшихся извещателей.

1. Неплохов И. Классификация неадресных шлейфов, или Почему за рубежом нет двухпороговых приборов// «Алгоритм безопасности», № 3, 2008.
2. Баканов В. Ключ к системам пожарной сигнализации высокой надежности// SECURITY.UA, №2, 2010.
3. Пинаев А., Никольский М. Оценка качества и надежности неадресных приборов пожарной сигнализации // «Алгоритм безопасности», № 6, 2007.

Опубликовано в журнале Алгоритм безопасности № 5 2010
И. Неплохов, к.т.н., технический директор Бизнес группы «Центр-СБ»

Источник

Оцените статью
Adblock
detector