Двухтактный преобразователь напряжения трансформатора

Двухтактный преобразователь напряжения

Одной из популярнейших топологий импульсных преобразователей напряжения является двухтактный преобразователь или push-pull (в дословном переводе — тяни-толкай).

В отличие от однотактного обратноходового преобразователя (flyback), энергия в сердечнике пуш-пула не запасается, потому что в данном случае это — сердечник трансформатора, а не сердечник дросселя, он служит здесь проводником для переменного магнитного потока, создаваемого по очереди двумя половинами первичной обмотки.

Тем не менее, несмотря на то, что это именно импульсный трансформатор с фиксированным коэффициентом трансформации, напряжение стабилизации выхода двухтактника все равно может изменяться посредством варьирования ширины рабочих импульсов (с помощью широтно-импульсной модуляции).

В силу высокой эффективности (КПД до 95%) и наличия гальванической развязки первичной и вторичной цепей, двухтактные импульсные преобразователи широко используется в стабилизаторах и инверторах мощностью от 200 до 500 Вт (блоки питания, автомобильные инверторы, ИБП и т.д.)

На рисунке ниже изображена общая схема типичного двухтактного преобразователя. Как первичная, так и вторичная обмотки имеют отводы от середин, чтобы в каждый из двух рабочих полупериодов, когда активен только один из транзисторов, была бы задействована своя половина первичной обмотки и соответствующая половина вторичной обмотки, где напряжение упадет лишь на одном из двух диодов.

Применение двухполупериодного выпрямителя с диодами Шоттки, на выходе двухтактного преобразователя, позволяет снизить активные потери и повысить КПД, ведь экономически гораздо целесообразнее намотать две половины вторичной обмотки, чем нести потери (финансовые и активные) с диодным мостом из четырех диодов.

Ключи в первичной цепи двухтактного преобразователя (MOSFET или IGBT) должны быть рассчитаны на удвоенное напряжение питания, чтобы выдержать действие не только ЭДС источника, но и добавочное действие ЭДС, наводимых во время работы друг друга.

Особенности устройства и режима работы двухтактной схемы выгодно отличают ее от полумостовой, прямоходовой и обратноходовой. В отличие от полумостовой, здесь нет необходимости развязывать цепь управления ключами от входного напряжения. Двухтактный преобразователь работает как два однотактных прямоходовых преобразователя в одном устройстве.

К тому же, в отличие от прямоходового, духтактному преобразователю не нужна ограничительная обмотка, так как один из выходных диодов продолжает проводить ток даже при закрытых транзисторах. Наконец, в отличие от обратноходового преобразователя, в двухтактнике ключи и магнитопровод используются более щадящим образом, а эффективная длительность импульсов больше.

Во встроенных блоках питания электронных устройств все более популярны двухтактные схемы с управлением по току. При таком подходе проблема повышенного напряжения на ключах исключается на корню. В общую истоковую цепь ключей включается резистор-шунт, с которого снимается напряжение обратной связи для защиты по току. Каждый цикл работы ключей ограничивается по длительности моментом достижения током заданной величины. Под нагрузкой выходное напряжение, как правило, ограничивается посредством ШИМ.

При проектировании двухтактного преобразователя особое внимание уделяют подбору ключей, чтобы сопротивление открытого канала и емкость затвора были бы как можно меньше. Для управления затворами полевых транзисторов в двухтактном преобразователе чаще всего применяют микросхемы-драйверы затворов, которые легко справляются со своей задачей даже на частотах в стони килогерц, свойственных импульсным источникам питания любой топологии.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Двухтактный преобразователь напряжения трансформатора

Двухтактные преобразователи очень критичны к несимметричному перемагничиванню магнитопровода, поэтому в мостовых схемах во избежание насыщения магнитопроводов (рис.1) и вследствие этого — возникновения сквозных токов необходимо принимать специальные меры по симметрированию петли гистерезиса, или в простейшем варианте

Читайте также:  Как изменится напряжение между пластинами конденсатора при уменьшении

— вводить воздушный зазор и конденсатор последовательно с первичной обмоткой трансформатора.

Совместное решение задач повышения надежности полупроводниковых ключей и улучшения электромагнитной совместимости, способствующее снижению массогабаритных показателей, возможно при организации в преобразователях естественных электромагнитных процессов, при которых переключение ключей происходит при токах, равных или близких к нулю. При этом спектр тока затухает быстрее и мощность радиопомех значительно ослабляется, что упрощает фильтрацию как входного, так и выходного напряжения [6].

Остановимся на наиболее простом полумостовом автогенераторном нерегулируемом инверторе с коммутирующим насыщающимся трансформатором (рис.2). К его достоинствам следует отнести отсутствие постоянной составляющей тока в первичной обмотке трансформатора питания благодаря емкостному делителю.

Полумостовая схема обеспечивает преобразование мощности 0,25. 0,5 кВт в одной ячейке. Напряжения на закрытых транзисторах не превышают напряжение питания. Инвертор имеет два контура ПОС:

— один — по току (пропорционально-токовое управление);

Применение пропорционально-токового управления транзисторных ключей позволяет к моменту выключения автоматически вывести транзистор из насыщения, уменьшить время рассасывания и снизить потери мощности в цепях управления.

Цепь ОС по напряжению дает возможность реализовать автоматически изменяемую задержку момента открывания очередного транзистора и симметрирование режима перемагничивания магнитопровода силового трансформатора. После выхода из насыщенного состояния ранее открытого транзистора его коллекторное напряжение в процессе перезаряда емкости коллекторного р-п перехода Ск нарастает сравнительно медленно. При этом на обмотках Т1 и Т2 сохраняются первоначальные полярности напряжений, и ранее закрытый транзистор продолжает оставаться в закрытом состоянии (рис.3).

Увеличение тока намагничивания силового трансформатора приводит к автоматическому ускорению процесса перезаряда Ск, уменьшению длительности временной паузы tп между моментами открывания и закрывания мощных транзисторов и автоматической компенсации несимметрии схемы.

Роль элементов резонансного колебательного контура выполняют индуктивность рассеяния обмоток Т1 и индуктивность обмотки I трансформатора Т2 вместе с емкостями С1 . С3. Так как в индуктивность резонансного контура входит индуктивность вторичной обмотки для обеспечения уверенной работы резонансного контура, его необходимо отделить от емкости нагрузки (фильтра) дросселем L1:

где Lp — эквивалентная индуктивность контура.

Соответствующим выбором резонансной частоты контура fрез=fп можно обеспечить бестоковую коммутацию мощных транзисторов.

Поскольку в контуре возникают перенапряжения от +1,5Е до -0,5Е, параллельно транзисторам включены возвратные диоды VD1 и VD2. На интервале закрытого состояния ключей энергия, накопленная в контуре, через возвратные диоды передается в нагрузку и частично возвращается в источник питания.

Схема запуска выполнена на однопереходном транзисторе VT3. После пуска преобразователя, благодаря наличию диода VD3, схема запуска отключается, т.к. постоянная времени R3C5 значительно больше периода преобразования.

В тиристорных преобразователях на резонансный контур возложена основная задача обеспечения естественной коммутации тиристоров.

Наибольшее применение резонансные контуры (последовательные, последовательно-параллельные, параллельные) находят при ЧИМ-регулировании. Причем с параллельным контуром диапазон регулирования в 1,5. 2 раза больше, чем с последовательным. Однако необходимость почти идеального источника тока сдерживает их применение. Последовательным же контурам свойственно естественное ограничение тока, что позволяет достаточно просто включать их на общую нагрузку. Выключение транзисторов происходит с минимальными потерями, обусловленными током намагничивания трансформатора, т.е. на холостом ходу.

В двухтактных инверторах при действии симметричных импульсов напряжения магнитопровод не насыщается при выполнении известного соотношения:

где tи — длительность импульса, мкс

При этом рост тока i за время tи близок к линейному.

Подставив в выражение (53) dВ=2Вm и tи=0,5Т=0,5*10 /f, получаем выражение для числа витков первичной обмотки

где Uвх=Е/2 — для полумостовой схемы;

Uвх=Е — для мостовой. Амплитудное значение тока коллектора

Эффективный ток первичной обмотки

Читайте также:  Узм или стабилизатор напряжения что лучше

Диаметр провода рассчитывают по формуле. Число витков первичной обмотки коммутирующего трансформатора рассчитывают по формуле (2), подставив вместо Вm значение Bs.

Пример расчета (схема рис.2).

Номинальное напряжение питания

Габаритная мощность трансформатора

Входное напряжение трансформатора преобразователя

Амплитуда тока коллектора в соответствии с (3)

Ток базы с учетом h21э=10:Iб=Iкm/h21э=0,1 (А).

Ток базы с учетом коэффициента насыщения Кнас=2: .

Мощность управления транзисторами

Плотность тока принимаем 5 А/мм2.

Такую мощность можно получить на кольце К32х20х6, однако с целью уменьшения числа витков выбираем кольцо К40х25х11 М2000НМ. Число витков первичной обмотки по формуле (2)

Число витков вторичной обмотки

п2 рассчитано без учета потерь на активных элементах — выпрямительных диодах мостов и транзисторах.

Принимаем число витков связи с коммутирующим трансформатором равным 2.

Напряжение на первичной обмотке коммутирующего трансформатора

Для коммутирующего трансформатора выбираем сердечник К 10х6х4,5 с габаритной мощностью

Ргаб =fjSьмSodBKм*102=30*103*6*0,025*0,2*10-2=1,3 (Вт), что превышает необходимую мощность управления транзисторами.

Число витков первичной обмотки по формуле (2),

Коэффициент трансформации К=Uбэ/Uвх=1,5/4=0,4.

Число витков базовой обмотки

Для ПОС по току принимаем один виток связи.

Источник

Двухтактные преобразователи напряжения

Простейшим двухтактным инвертором является автогенератор по схеме Ройера. Здесь транзисторы попеременно находятся в состоянии насыщения и отсечки. Эта схема приведена на рисунке 1.


Рисунок 1 Схема двухтактного преобразователя напряжения

После включения питания через резистор R1 протекает ток, открывающий оба транзистора. Схема симметрична и коллекторные токи транзисторов равны между собой , ЭДС самоиндукции в обмотках W1 также равны по величине, но противоположны по направлению. Поэтому коллекторная обмотка в целом нейтральна и в базовой обмотке ничего не наводится. За счёт тепловых, дробовых или фликкер–шумов ток одного из транзисторов мгновенно станет больше. Пусть , тогда в базовой обмотке появится ЭДС, как показано на рисунке 1, под действием которой VT1 приоткрывается, а VT2 призакрывается, iK1 ещё больше возрастает, возрастает ЭДС и т.д. протекает лавинообразный процесс, в результате которого VT1 входит в насыщение, а VT2 – в состояние отсечки. Рабочая точка сердечника входит в область насыщения рост тока прекращается, ЭДС самоиндукции меняет знак на противоположный, чтобы поддержать падающий ток и происходит обратный лавинообразный процесс, в результате которого VT2 входит в насыщение, а VT1 – в состояние отсечки и так далее.

Это автогенератор с насыщающимся трансформатором. Индукция в сердечнике меняется от –Bm до +Bm. Резистор R1 служит для запуска схемы, а резистор Rб ограничивает базовый ток в открытом состоянии.

Из–за конечного быстродействия транзисторов, работающих с насыщением, время рассасывания коллекторного тока не равно нулю и время выключения больше времени включения. Поэтому в момент смены полярности напряжения на W1 , VT1 ещё не успевает перейти в состояние отсечки, а VT2 уже включился и, к ещё открытому VT1, прикладывается напряжение

Поэтому коллекторный ток имеет всплеск – так называемый сквозной ток. Временные диаграммы напряжения приведены на рисунке 2.


Рисунок 2 Сквозные токи в схеме Ройера

Величина сквозного тока может в несколько раз превышать рабочий ток. Поэтому в современных источниках питания такие схемы используется редко, но в радиолюбительской практике очень широко – простота и надёжность, при небольшой выходной мощности – до 100 Ватт делают схему очень привлекательной.

Для больших мощностей используют преобразователи с независимым возбуждением, чтобы уменьшить мощность потерь в насыщающемся выходном трансформаторе. Усложняется схема управления, формируются сигналы управления с запасом по времени на выключение транзисторов.

К двухтактным относятся также мостовые и полумостовые схемы. На рисунке 3а приведена силовая цепь мостового инвертора, а на рисунке 3б – диаграмма работы при активной нагрузке. Ключи работают попарно и поочерёдно (VT1, VT4 и VT2, VT3). Потери здесь больше, чем в обычной схеме, поскольку в цепи тока включены последовательно два ключа. Напряжение на закрытом ключе равно всего Eк, поэтому такая схема предпочтительна при высоких напряжениях питания. Форма напряжения на нагрузке и форма тока совпадают.

Читайте также:  Какое значение напряжение в высоковольтной подвагонной магистрали


Рисунок 3 Мостовой инвертор

На практике нагрузка редко бывает активной, обычно она имеет индуктивный характер (рисунок 4) и ток в первичной обмотке не может измениться мгновенно.


Рисунок 4 Мостовой инвертор с индуктивным характером нагрузки

После коммутации ключей (VT1,4 закрываются, VT2,3 открываются) под действием ЭДС самоиндукции ток протекает ещё некоторое время (Δt) через первичную обмотку в том же направлении. Ключи VT2,3 не держат обратного напряжения и могут быть пробиты этой ЭДС самоиндукции. Для их защиты и создания пути тока разряда индуктивности все ключи шунтируют диодами. На рисунке 4 условно показаны только два из них. Энергия, запасённая в индуктивности, возвращается в источник по цепи: минус источника ЕК, диод VD3, обмотка W1, диод VD2, плюс источника ЕК , имеет место рекуперация, а чтобы ток протекал в источник, величина ЭДС превышает ЕК на величину ΔU. Мгновенная мощность на интервале Δt отрицательна

Рекуперация энергии может играть и положительную роль. Например, городской электротранспорт и локомотивы на железной дороге. В них, при движении идёт потребление энергии от контактной сети приводными электродвигателями. При торможении двигатели переключаются в генераторный режим, кинетическая энергия движения преобразуется в электрическую и возвращается в сеть. В источниках электропитания рекуперация приводит только к дополнительным потерям и её следует избегать. В мостовом инверторе, например, можно изменить алгоритм управления ключами, как показано на рисунке 5.


Рисунок 5 Мостовой инвертор без рекуперации

В этой схеме при замкнутых ключах VT1 и VT4, идёт передача энергии в нагрузку и её накопление в индуктивности. После размыкания VT1, ЭДС самоиндукции меняет знак, как показано на рисунке 6а и индуктивность разряжается через открытый ключ VT4 и защитный диод VD3 на нагрузку. Здесь запас по времени такой, что индуктивность полностью разряжается и появляются высшие гармоники в составе выходного напряжения. Если не будет разрыва между токами ip и i1, то не будет провала в выходном напряжении и в его спектре будет меньше высших гармоник.

В мостовых схемах переобразователей напряжения имеется четыре управляемых ключа и довольно сложная схема управления. Уменьшить число ключей позволяет полумостовая схема, которая приведена на рисунке 6.


Рисунок 6 полумостовая схема переобразователя напряжения

Здесь конденсаторы С1 и С2 создают искусственную среднюю точку источника . При открытом VT1 конденсатор С1 разряжается на нагрузку и подзаряжается С2, а при открытом VT2 – наоборот С2 разряжается на нагрузку и подзаряжается С1. Напряжение, прикладываемое к первичной обмотке трансформатора равно напряжению на одном конденсаторе.

Понравился материал? Поделись с друзьями!

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Режимы работы трансформатора

Вместе со статьей «Двухтактные преобразователи» читают:

Источник

Оцените статью
Adblock
detector