Энергия от источника постоянного напряжения передается

Колебания и волны

UptoLike

Решебник Иродова И.Е. (1979) — Задача 4. 210

Показать, что на границе раздела двух сред нормальные составляющие вектора Пойнтинга не терпят разрыва, т.е. S1n=S2n.

Решебник Иродова И.Е. (1979) — Задача 4. 209

Генератор переменного напряжения U=U0 cos wt передает энергию потребителю по длинному прямому коаксиальному кабелю с пренебрежимо малым активным сопротивлением. Ток в цепи меняется по закону I=I0 cos (wt — ф). Найти средний по времени поток энергии через поперечное сечение кабеля.

Решебник Иродова И.Е. (1979) — Задача 4. 208

Энергия от источника постоянного напряжения U передается к потребителю по длинному прямому коаксиальному кабелю с пренебрежимо малым активным сопротивлением. Потребляемый ток равен I.Найти поток энергии через поперечное сечение кабеля.

Решебник Иродова И.Е. (1979) — Задача 4. 207

На рис. 4.39 показан участок двухпроводной линии передачи постоянного тока, направление которого отмечено стрелками. Имея в виду, что потенциал ф2 > ф1 установить с помощью вектора Пойнтинга, где находится генератор тока (слева, справа?).

Решебник Иродова И.Е. (1979) — Задача 4. 206

Ток, протекающий по обмотке длинного прямого соленоида, достаточно медленно увеличивают. Показать, что скорость возрастания энергии магнитного поля в соленоиде равна потоку вектора Пойнтинга через его боковую поверхность.

Решебник Иродова И.Е. (1979) — Задача 4. 205

Нерелятивистские протоны, ускоренные разностью потенциалов U, образуют пучок круглого сечения с током I. Найти модуль и направление вектора Пойнтинга вне пучка на расстоянии r от его оси.

Решебник Иродова И.Е. (1979) — Задача 4. 204

По прямому проводнику круглого сечения течет ток I. Найти поток вектора Пойнтинга через боковую поверхность участка данного проводника, имеющего сопротивление R.

Решебник Иродова И.Е. (1979) — Задача 4. 203

Плоский конденсатор с круглыми параллельными пластинами медленно заряжают. Показать, что поток вектора Пойнтинга через боковую поверхность конденсатора равен приращению энергии конденсатора за единицу времени. Рассеянием поля на краях при расчете пренебречь.

Решебник Иродова И.Е. (1979) — Задача 4. 202

Переменный синусоидальный ток частоты w=1000 рад/с течет по обмотке прямого соленоида, радиус сечения которого R=6,0 см. Найти отношение амплитудных значений электрической и магнитной энергий внутри соленоида.

Решебник Иродова И.Е. (1979) — Задача 4. 201

Плоский воздушный конденсатор, обкладки которого имеют форму дисков радиуса R=6,0 см, подключен к переменному синусоидальному напряжению частоты w=1000 рад/с. Найти отношение амплитудных значений магнитной и электрической энергий внутри конденсатора.

Источник

Передача электроэнергии по проводам

Электрическая цепь состоит по меньшей мере из трех элементов: генератора, являющегося источником электрической энергии, приемника энергии и проводов, соединяющих генератор и приемник.

Электрические станции зачастую расположены вдали от мест потребления электроэнергии. На десятки и даже сотни километров между электростанцией и местом потребления энергии протягивается воздушная линия передачи. Провода линии передачи укрепляются на столбах изоляторами, изготовленными из диэлектрика, чаще всего из фарфора.

С помощью воздушных линий, составляющих электрическую сеть, ток подводится к жилым и промышленным зданиям, в которых расположены потребители энергии. Внутри зданий электрическая проводка выполняется из изолированных медных проводов и кабелей и называется внутренней электропроводкой.

При передаче электроэнергии по проводам наблюдается ряд нежелательных явлений, связанных с сопротивлением проводов электрическому току. К этим явлениям относятся потери напряжения, потери мощности в линии, нагрев проводов.

Потери напряжения в линии

При прохождении тока на сопротивлении линии создается падение напряжения. Сопротивление линии R л можно вычислить, если известны длина линии l (в метрах), поперечное сечение провода S (в квадратных миллиметрах) и удельное сопротивление материала провода ρ :

(в формуле стоит цифра 2, так как нужно учесть оба провода).

Если по линии проходит ток l , то падение напряжения в линии Δ U л по закону Ома равно: Δ U л = IR л .

Так как в линии часть напряжения теряется, то в конце линии (в приемнике) оно будет всегда меньшим, чем вначале линии (ни зажимах генератора). Уменьшение напряжения на приемнике за счет падения напряжения в линии может нарушить нормальную работу приемника.

Пусть, например, лампы накаливания нормально горят при напряжении 220 В и подключены к генератору, дающему напряжение 220 В. Предположим, что линия имеет длину l = 9 2 м, сечение провода S = 4 мм 2 и удельное сопротивление ρ=0,0175.

Читайте также:  Зависимость напряжения пробоя от расстояния между электродами

Сопротивление линии: R л = ρ( 2l/S) = 0,0175(2 х 92)/4 = 0,8 ом.

Если через лампы проходит ток I = 10 А, то падение напряжения в линии составит: Δ U л = IR л = 10 х 0,8 = 8 В . Следовательно, на лампах напряжение будет меньше напряжения генератора на 2,4 В: U ламп = 220 — 8 = 212 В. Лампы будут горсть с недокалом. Изменение тока, проходящего через приемники, вызывает изменение падения напряжении в линии, в результате чего меняется и напряжении на приемниках.

Пусть в рассмотренном примере отключается одна из ламп, и ток в линии уменьшится до 5 А. При этом падение напряжения в линии уменьшится: ΔUл = IRл = 5 х 0,8 = 4 В.

На включенной лампе напряжение повысится до что вызовет заметное увеличение ее накала. Из примера видно, что включение или отключение отдельных приемником вызывает изменение напряжении па других приемниках за счет изменении падении напряжения в линии. Рассмотренными явлениями объясняются колебания напряжении, часто наблюдаемые в электрических сетях.

Влияние сопротивления линии на величину напряжения сети характеризуют относительной потерей напряжения. Выраженное в процентах отношение падении напряжения в линии к нормальному напряжению называется относительной потерей напряжения (обозначается Δ U %):

По существующим нормам провода линии должны быть рассчитаны так, чтобы потери напряжения но превосходили 5%, а при осветительной нагрузке не превышали 2 — 3%.

Часть электрической энергии, вырабатываемой генератором, переходит в тепловую и бесполезно затрачивается в липни, вызывая нагрев проводив. В результате энергия, получаемая приемником, всегда меньше энергии, отдаваемой генератором. Точно так же мощность, затрачиваемая в приемнике, всегда меньше мощности, развиваемой генератором.

Потери мощности в линии можно вычислить, зная силу тока и сопротивление линии: P потерь = I 2 R л

Чтобы характеризовать экономичность передачи энергии, определяют коэффициент полезного действия линии , под которым понимают отношение мощности, полученном приемником, к мощности, развиваемой генератором.

Так как мощность, развиваемая генератором, больше мощности приемника на величину мощности потерь в линии, то коэффициент полезного действия (обозначается греческой буквой η — эта) вычисляется, как: η = P полезн/( P полезн + P потерь)

где, Рполезн — мощность, затрачиваемая в приемнике, Рпотерь — потери мощности в линий.

Из ранее рассмотренном примере при силе тока I = 10 А потери мощности в линии ( R л = 0,8 Ом):

Рпотерь = I 2 R л = 10 2 х 0 ,8 = 80 Вт.

Полезная мощность Рполезн = U ламп х I = 212 х 10 = 2120 Вт.

Коэффициент полезного действия η = 2120/(2120 + 80) = 0,96 (или 96%), т.е. приемники получают лишь 96% энергии, вырабатываемой генератором.

Нагрев проводов и кабелей за счет тепла, выделяемого электрическим током,— вредное явление. При длительной работе в условиях повышенной температуры изоляция проводов и кабелей стареет, становится хрупкой и крошится. Разрушение изоляции недопустимо, так как при этом создается возможность соприкосновения оголенных частей проводов друг с другом и так называемого короткого замыкания.

Прикосновение к оголенным проводам может вызвать поражение электрическим током. Наконец, чрезмерное повышение температуры провода может привести к воспламенению его изоляции и к пожару.

Чтобы нагрев не превосходил допустимой величины, нужно правильно выбирать сечение проводов. Чем больше сила тока , тем большее сечение должен иметь провод, так как с увеличением сечения уменьшается сопротивление, а следовательно, уменьшается количество выделяемого тепла.

Выбор сечения проводов по нагреву производится по таблицам, в которых указано, какой силы ток может проходить по проводу, не вызывая недопустимого перегре в а. Иногда указывают допустимую плотность тока, т. е. величину тока, приходящуюся на один квадратный миллиметр поперечного сечения провода.

Плотность тока Ј равна силе тока (в амперах), деленной на поперечное сечение провода (в квадратных миллиметрах): Ј = I/S а/мм 2

Зная допустимую плотность тока Ј доп, можно найти необходимое сечение провода: S = I/ Јдоп

Для внутренней электропроводки допустимая плотность тока составляет в среднем 6 А /мм2.

Пример . Необходимо определить сечение провода, если известно, что ток, проходящий через него, должен быть равен I = 15 А , а допустимая плотность тока Јдоп — 6 А мм 2 .

Решен ие . Необходимое сечение провода S = I/ Јдоп = 15/6 = 2,5 мм 2

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Методы передачи электроэнергии на расстояние

Электроэнергией является свойство магнитного поля преобразоваться в иные виды энергии. Такими видами энергии могут быть: механическая, химическая, паровая, лазерная. Число потребителей и источников потребления постоянно растет. Поэтому вопрос о способах передачи электроэнергии на большие расстояния, с сохранением мощности и ее распределением, остается открытым. Статья опишет основные и актуальные способы передачи, а также современные разработки в области беспроводных технологий.

Читайте также:  Регулятор напряжения астро схема подключения

Способы передачи электроэнергии

Электроэнергия или переменный ток, передается от источника к потребителю, через провода или подземные кабельные линии. Эти способы актуальны на протяжении многих лет. Связано это с тем, что нет технологии, способной передать электричество на большое расстояние при минимальных потерях с сохранением полной мощности. Да и способ еще должен быть максимально надежным и дешевым.

Схема передачи переменного электрического напряжения или постоянного электрического напряжения выглядит следующим образом:

Принцип работы и объяснение схемы:

  1. В начале схемы находится генератор, вырабатывающий электричество.
  2. От генератора напряжение подается на трехфазный трансформатор, для повышения мощности. От него электричество течет по ЛЭП (линия электропередачи).
  3. После ЛЭП напряжение попадает на трехфазный понижающий трансформатор.
  4. От трансформатора напряжение подается потребителю, с существенным занижением.

Для постоянного тока существует выпрямительное устройство, которое находится после повышающего трансформатора. Пройдя по ЛЭП, постоянный ток сначала должен попасть на устройство преобразования постоянного тока в переменный, а только потом на понижающий трансформатор.

Воздушные и кабельные линии

Потребление электроэнергии по воздушным ЛЭП и кабельным линиям, представляет собой определенную схему. В начале схемы находится источник энергии, а именно электростанция. Электростанция подает завышенное напряжение на распределительную линию, в конце которой находится занижающий трансформатор. Основным минусом подобной схемы является именно потребность в подаче слишком высокой мощности. Связано это с потерей доли напряжения на расстоянии. Способов подобной передачи 2.

Воздушные линии представляют собой сеть высоковольтных проводов, подвешенных на столбы или опоры. Этот метод очень распространен и является эффективным. Но и у него есть ряд минусов:

  • большие затраты в рабочей силе и материале на стадии поставки новым потребителям на большое расстояние;
  • потеря значительной доли мощности с каждым километром;
  • требование подачи большой мощности в начале (от электростанции);
  • вред магнитного поля для человека;
  • большая вероятность повреждения и разрушения от природных катаклизмов;
  • большие трудности для монтажа ЛЭП в трудных, непроходимых регионах.

Воздушные линии подают потребителю переменный ток. По дальности и мощности они делятся на следующие категории:

  1. Воздушные линии напряжением до 1 кВ считаются низковольтными. Они являются окончанием схемы передачи к потребителю.
  2. Линии с напряжением от 1 до 35 кВ считаются средними.
  3. Высоковольтными линиями считаются ВЭЛ с напряжением 110-220 кВ. Эти линии являются началом схемы передачи напряжения.
  4. К сверхвысоковольтным относятся ВЭЛ напряжением 330–750 кВ.
  5. К ультра высоковольтным относятся ВЭЛ напряжением, превышающим 750 кВ.

Чем выше подаваемое напряжение, тем большие расстояния оно должно покрыть от источника к потребителю.

Кабельные линии работают по схожему принципу. По ним также поступает переменный электрический ток. Но проводят такие линии под землей или под водой. Основными недостатками подобной передачи являются:

  1. Большие трудности и затраты при прокладке. Кабельные линии прокладываются в местах, где невозможно или опасно проводить воздушные линии.
  2. Также идет потеря доли напряжения с расстоянием.
  3. Существует опасность механического повреждения или растяжения кабеля.
  4. Есть опасность шагового напряжения при повреждении, особенно в воде.
  5. Очень тяжело найти и устранить повреждение.

На данный момент существует 2 схемы передачи электроэнергии от источника к потребителю по воздушным или кабельным линиям:

  1. Разомкнутая схема. Эта схема передачи представляет собой источник напряжения и потребителя как прямую линию. Минусом такой схемы является отсутствие резервной линии при повреждении какого-либо участка.
  2. Замкнутая схема (более надежна). В ней источник и все потребители заключены в кольцо или сложную схему. При повреждении участка линии, подача электричества не прекращается.

Подобные схемы также делятся на категории.

Схемы в визуальном отображении:

Разомкнутая схема бывает 3 видов:

  1. Схема радиального подключения, в которой на одном конце находится подающее устройство, а на втором конце потребитель энергии.
  2. Магистральная схема похожа на радиальную, но в ней присутствуют дополнительные отводы для потребления.
  3. Схема магистральной подачи, при которой между двумя источниками находится один потребитель.

Замкнутая схема также бывает 3 видов:

  1. Кольцевая схема с одним источником и потребителем.
  2. Магистральная схема с наличием резервного источника.
  3. Сложная замкнутая схема, для подключения потребителей особого назначения.

Все эти схемы относятся к передаче постоянного тока потребителю. Передача и распределение электроэнергии подобным способом является одинаковым для российских и зарубежных сетей.

Постоянный ток

Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:

  1. С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
  2. Статическая устойчивость не оказывает влияния на передачу и распределение.
  3. Не требуется настраивать частотную синхронизацию.
  4. Напряжение можно передать всего по одной линии с одним контактным проводом.
  5. Нет влияния электромагнитного излучения.
  6. Минимальная реактивная мощность.
Читайте также:  Чем отличаются регуляторы напряжения от стабилизаторов

Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.

Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.

Беспроводная передача

Передать и распределить ток по потребителям без использования проводов, это реалии наших дней. Об этом способе впервые задумался и воплотил его в жизнь Никола Тесла. На сегодняшний день ведутся разработки в этом направлении. Основных способов всего 3.

Катушки

Катушками индуктивности является свернутый в спираль изолированный провод. Метод передачи тока состоит из 2 катушек, расположенных рядом друг с другом. Если подать электрический ток на одну из катушек, на второй появится магнитное возбуждение такого же напряжения. Любые изменения напряжения на катушке передатчике, изменятся на катушке приемнике. Подобный способ очень прост и имеет шансы на существование. Но есть и свои недостатки:

  • нет возможности подать высокое напряжение и принять его, тем самым невозможно обеспечить напряжением несколько потребителей одновременно;
  • невозможно передать электричество на большое расстояние;
  • коэффициент полезного действия (КПД) подобного способа — всего 40 %.

На данный момент актуальны способы простого использования катушек, как источника и получателя энергии. Этим способом заряжают электрические самокаты и велосипеды. Есть проекты электромобилей без аккумулятора, но на встроенной катушке. Предлагается использовать дорожное покрытие в качестве источника, а машину в качестве приемника. Но себестоимость прокладки подобных дорог очень высокая.

Лазер

Передача электричества посредством лазера, представляет собой источник, преобразующий энергию электричества в лазерный луч. Луч фокусируется на приемник, который его преобразует обратно в электричество. Компания Laser Motive смогла передать при помощи лазера 0.5 Кв электрического тока, на расстояние в 1 км. При этом потеря напряжения и мощности составила 95 %. Причиной потери стала атмосфера Земли. Луч многократно сужается при взаимодействии с воздухом. Также проблемой может стать обычное преломление луча случайными предметами. Подобный способ, без потери мощности, может быть актуальным только в космическом пространстве.

Микроволновая передача

Основой для передачи электроэнергии путем микроволн, стала способность 12 см волн, частотой в 2.45 ГГц, быть незаметными для атмосферы Земли. Подобная особенность могла бы сократить до минимума потерю при передаче. Для подобного способа нужны передатчик и приемник. Люди давно создали передатчик и преобразователь электрической энергии в микроволновую. Это изобретение называется магнетрон. Он стоит в каждой микроволновой печи и является очень безопасным. Вот с изобретением приемника и преобразователя микроволн обратно в электричество возникли проблемы.

В 60-х годах прошлого века, американцы изобрели ректенну. Иными словами, приемник микроволн. С помощью изобретения удалось передать 30 кВт электрического тока на расстояние в 1.5 км. При этом коэффициент потерь составил всего 18 %. На большее установка была не способна по причине использования полупроводниковых деталей в устройстве приемника. Для приема и передачи большей мощности энергии, при использовании ректенны, пришлось бы создать огромную принимающую панель. Это бы увеличило затрачиваемую энергию, частоту и длину волн, а значит и процент сопутствующей потери. Высокое излучение могло бы убить все живое в радиусе нескольких десятков метров.

В СССР был изобретен циклотронный преобразователь микроволн в электричество. Он представлял собой 40 см трубку и был полностью собран на лампах. КПД устройства равнялось 85 %. Но для этого способа основным минусом является способ сборки на лампах. Устройства на подобных деталях могут вернуть человечество в мир огромных телефонов, компьютеров величиной с комнату. О миниатюрных электрических приборах можно забыть.

Передачу микроволн можно было организовать из космоса. Подобный проект предполагал собирать энергию солнца при помощи спутника и перенаправлять на приемник, расположенный на поверхности Земли. Но для этого придется построить спутник диаметром в километр и приемник диаметром в 5 километров. О полетах в зоне действия системы можно полностью забыть.

Главной проблемой при передаче электричества беспроводным способом, является расстояние и атмосферные преломления. Стоит также учитывать мощности. Общая потребляемая мощность всех электрических приборов в квартире, равняется 30–40 кВт. Для обеспечения электричеством одной квартиры, пришлось бы строить гигантские сооружения.

На сегодняшний день единственным способом передачи энергии большой мощности, является проводной. Он не требует прямого и обратного преобразования электрической энергии. Достаточно только подать высокое напряжение в начале и существенно занизить его в конце. Этот способ имеет ряд недостатков, но остается актуальным долгие годы.

Видео по теме

Источник

Оцените статью
Adblock
detector