Как изменяется сдвиг фаз при уменьшении напряжения

Что такое фаза, фазовый угол и сдвиг фаз

Говоря о переменном токе, часто оперируют такими терминами как «фаза», «фазовый угол», «сдвиг фаз». Обычно это касается синусоидального переменного или пульсирующего тока (полученного путем выпрямления синусоидального тока).

Поскольку периодическое изменение ЭДС в сети или тока в цепи — это гармонический колебательный процесс, то и функция, описывающая данный процесс, — гармоническая, то есть синус или косинус, в зависимости от начального состояния колебательной системы.

Аргументом функции в данном случае является как раз фаза, то есть положение колеблющейся величины (тока или напряжения) в каждый рассматриваемый момент времени относительно момента начала колебаний. А сама функция принимает значение колеблющейся величины, в этот же момент времени.

Чтобы лучше понять значения термина «фаза», обратимся к графику зависимости напряжения в однофазной сети переменного тока от времени. Здесь мы видим что, напряжение изменяется от некоторого максимального значения Um до -Um, периодически проходя чрез ноль.

В процессе изменения, напряжение принимает множество значений в каждый момент времени, периодически (спустя период времени Т) возвращаясь к тому значению, с которого начиналось наблюдение за данным напряжением.

Можно сказать, что в любой момент времени напряжение находится в определенной фазе, которая зависит от нескольких факторов: от времени t, прошедшего от начала колебаний, от угловой частоты, и от начальной фазы. То что стоит в скобках — полная фаза колебаний в текущий момент времени t. Пси — начальная фаза.

Начальную фазу называют в электротехнике еще начальным фазовым углом, поскольку фаза измеряется в радианах или в градусах, как и все обычные геометрические углы. Пределы изменения фазы лежат в интервале от 0 до 360 градусов или от 0 до 2*пи радиан.

На приведенном выше рисунке видно, что в момент начала наблюдения за переменным напряжением U, его значение не было нулем, то есть фаза уже успела в данном примере отклониться от нуля на некоторый угол Пси, равный около 30 градусов или пи/6 радиан — это и есть начальный фазовый угол.

В составе аргумента синусоидальной функции, Пси является константной, поскольку данный угол определяется в начале наблюдения за изменяющимся напряжением, и потом уже в принципе не изменяется. Однако его наличие определяет общий сдвиг синусоидальной кривой относительно начала координат.

По ходу дальнейшего колебания напряжения, текущий фазовый угол изменяется, вместе с ним изменяется и напряжение.

Для синусоидальной функции, если полный фазовый угол (полная фаза с учетом начальной фазы) равен нулю, 180 градусам (пи радиан) или 360 градусам (2*пи радиан), то напряжение принимает нулевое значение, а если фазовый угол принимает значение 90 градусов (пи/2 радиан) или 270 градусов (3*пи/2 радиан) то в такие моменты напряжение максимально отклонено от нуля.

Обычно в ходе электротехнических измерений в цепях переменного синусоидального тока (напряжения), наблюдение ведут одновременно и за током и за напряжением в исследуемой цепи. Тогда графики тока и напряжения изображают на общей координатной плоскости.

В этом случае частота изменения тока и напряжения идентичны, но различны, если смотреть на графики, их начальные фазы. В этом случае говорят о фазовом сдвиге между током и напряжением, то есть о разности их начальных фазовых углов.

Иными словами фазовый сдвиг определяет то, на сколько одна синусоида смещена во времени относительно другой. Фазовый сдвиг, как и фазовый угол, измеряется в градусах или радианах. По фазе опережает тот синус, период которого начинается раньше, а отстает по фазе тот, чей период начинается позже. Фазовый сдвиг обозначают обычно буквой Фи.

Фазовый сдвиг, например, между напряжениями на проводах трехфазной сети переменного тока относительно друг друга является константой и равен 120 градусов или 2*пи/3 радиан.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Читайте также:  Стабилизатор напряжения неправильно показывает входящее напряжение

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Как увеличить косинус фи

На шильдиках двигателей и некоторых других устройств можно видеть параметр косинус фи (cos φ). Косинус фи (cos φ) часто называют «Коэффициент мощности». Это почти одно и то же при правильной синусоидальной форме тока. Иногда для обозначения коэффициента мощности используется λ, эту величину выражают в процентах, или PF.

Читайте также:  Напряжение после диодного моста постоянное или переменное

Косинус фи (cos φ) это косинус угла между фазой напряжения и фазой тока. При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). А как мы знаем cos0=1. То есть при активной нагрузке коэффициент мощности равен 1 или 100%.

При емкостной или индуктивной нагрузке фаза тока не совпадает с фазой напряжения. Получается «сдвиг фаз». При индуктивной или активно-индуктивной нагрузке (с катушками: двигатели, дросселя, трансформаторы) фаза тока отстает от фазы напряжения.
При емкостной нагрузке (конденсатор) фаза тока опережает фазу напряжения. А почему тогда косинус фи (cos φ) это тоже самое что коэффициент мощности , да потому что S=U*I. Посмотрите на графики ниже. Здесь φ равно 90 косинус фи (cosφ)=0(нулю).

Причины низкого «косинуса фи»

Недозагрузка электродвигателей переменного тока

При недозагрузке электродвигателя потребляемая им активная мощность уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает.

Так, например, асинхронный двигатель в 400 кВт при 1000 оборотах в минуту имеет «косинус фи», равный при полной нагрузке 0,83. При ¾ нагрузки тот же двигатель имеет cos φ = 0,8. При ½ нагрузке cos φ = 0,7 и при ¼ нагрузки cos φ = 0,5.

Двигатели, работающие вхолостую, имеют «косинус фи», равный от 0,1 до 0,3 в зависимости от типа, мощности и скорости вращения.

Неправильный выбор типа электродвигателя

Двигатели быстроходные и большой мощности имеют более высокий «косинус фи», чем тихоходные и маломощные двигатели. Двигатели закрытого типа имеют cos φ ниже, чем двигатели открытого типа. Двигатели, неправильно выбранные по типу, мощности и скорости, понижают cos φ.

Повышение напряжения в сети

В часы малых нагрузок, обеденных перерывов и тому подобного напряжение сети на предприятии увеличивается на несколько вольт. Это ведет к увеличению намагничивающего тока индивидуальных потребителей (реактивной составляющей их полного тока), что в свою очередь вызывает уменьшение cos φ предприятия.

Неправильный ремонт двигателя

При перемотке электродвигателей обмотчики вследствие неправильного подбора проводов иногда не заполняют пазы машины тем количеством проводников, которое было в фабричной обмотке. При работе такого двигателя, вышедшего из ремонта, увеличивается магнитный поток рассеяния, что приводит к уменьшению cos φ двигателя.

При сильном износе подшипников ротор двигателя может задевать при вращении за статор. Вместо того чтобы сменить подшипники, обслуживающий персонал иногда идет по неправильному и вредному пути и подвергает ротор обточке.

Увеличение воздушного зазора между ротором и статором вызывает увеличение намагничивающего тока и уменьшение cos φ двигателя.

Способы увеличения «косинуса фи»

Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ. К мерам увеличения cos φ относятся:

  1. Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
  2. Увеличение загрузки двигателей;
  3. Недопущение работы двигателей вхолостую продолжительное время;
  4. Правильный и высококачественный ремонт двигателей;
  5. Применение статических (то есть неподвижных, невращающихся) конденсаторов.

Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.

Подбирая величину емкости при параллельном соединении и емкости, можно добиться уменьшения угла сдвига фаз между напряжением и общим током при неизменной активной и реактивной мощности, потребляемой ветвью с индуктивностью. Этот угол можно сделать равным нулю. Тогда ток, текущий на общем участке цепи, будет иметь наименьшую величину и совпадать по фазе с напряжением сети.

Это явление называется компенсацией сдвига фаз и широко используется на практике. По экономическим соображениям невыгодно доводить угол φ до нуля, практически целесообразно иметь cos φ = 0,9 – 0,95.

Рассмотрим расчет емкости конденсаторов, которые нужно включить параллельно индуктивной нагрузке, чтобы повысить cos φ до заданной величины.

На рисунке 1, а изображена схема включения индуктивной нагрузки в сеть переменного тока. Для увеличения коэффициента мощности параллельно потребителю включена батарея конденсаторов. Векторная диаграмма начинается с построения вектора напряжения U. Ток I1 вследствие индуктивного характера нагрузки отстает по фазе от напряжения сети на угол φ1. Необходимо уменьшить угол сдвига фаз между напряжением U и общим током до величины φ. Иначе говоря, увеличить коэффициент мощности от значения cos φ1 до значения cos φ.

Читайте также:  Не открывается редактор кривой частот напряжений в msi afterburner

Источник

Что такое фаза, фазовый угол и сдвиг фаз

Говоря о переменном токе, часто оперируют такими терминами как «фаза», «фазовый угол», «сдвиг фаз». Обычно это касается синусоидального переменного или пульсирующего тока (полученного путем выпрямления синусоидального тока).

Поскольку периодическое изменение ЭДС в сети или тока в цепи — это гармонический колебательный процесс , то и функция, описывающая данный процесс, — гармоническая, то есть синус или косинус, в зависимости от начального состояния колебательной системы.

Аргументом функции в данном случае является как раз фаза, то есть положение колеблющейся величины (тока или напряжения) в каждый рассматриваемый момент времени относительно момента начала колебаний. А сама функция принимает значение колеблющейся величины, в этот же момент времени.

Чтобы лучше понять значения термина «фаза», обратимся к графику зависимости напряжения в однофазной сети переменного тока от времени. Здесь мы видим что, напряжение изменяется от некоторого максимального значения Um до -Um, периодически проходя чрез ноль.

В процессе изменения, напряжение принимает множество значений в каждый момент времени, периодически (спустя период времени Т) возвращаясь к тому значению, с которого начиналось наблюдение за данным напряжением.

Можно сказать, что в любой момент времени напряжение находится в определенной фазе, которая зависит от нескольких факторов: от времени t, прошедшего от начала колебаний, от угловой частоты, и от начальной фазы. То что стоит в скобках — полная фаза колебаний в текущий момент времени t. Пси — начальная фаза.

Начальную фазу называют в электротехнике еще начальным фазовым углом , поскольку фаза измеряется в радианах или в градусах, как и все обычные геометрические углы. Пределы изменения фазы лежат в интервале от 0 до 360 градусов или от 0 до 2*пи радиан.

На приведенном выше рисунке видно, что в момент начала наблюдения за переменным напряжением U, его значение не было нулем, то есть фаза уже успела в данном примере отклониться от нуля на некоторый угол Пси, равный около 30 градусов или пи/6 радиан — это и есть начальный фазовый угол.

В составе аргумента синусоидальной функции, Пси является константной, поскольку данный угол определяется в начале наблюдения за изменяющимся напряжением, и потом уже в принципе не изменяется. Однако его наличие определяет общий сдвиг синусоидальной кривой относительно начала координат.

По ходу дальнейшего колебания напряжения, текущий фазовый угол изменяется, вместе с ним изменяется и напряжение.

Для синусоидальной функции, если полный фазовый угол (полная фаза с учетом начальной фазы) равен нулю, 180 градусам (пи радиан) или 360 градусам (2*пи радиан), то напряжение принимает нулевое значение, а если фазовый угол принимает значение 90 градусов (пи/2 радиан) или 270 градусов (3*пи/2 радиан) то в такие моменты напряжение максимально отклонено от нуля.

Обычно в ходе электротехнических измерений в цепях переменного синусоидального тока (напряжения), наблюдение ведут одновременно и за током и за напряжением в исследуемой цепи. Тогда графики тока и напряжения изображают на общей координатной плоскости.

При наличии в цепи переменного тока конденсатора или катушки индуктивности частота изменения тока и напряжения идентичны, но различны, если смотреть на графики, их начальные фазы. В этом случае говорят о фазовом сдвиге между током и напряжением, то есть о разности их начальных фазовых углов.

Иными словами фазовый сдвиг определяет то, на сколько одна синусоида смещена во времени относительно другой. Фазовый сдвиг, как и фазовый угол, измеряется в градусах или радианах. По фазе опережает тот синус, период которого начинается раньше, а отстает по фазе тот, чей период начинается позже. Фазовый сдвиг обозначают обычно буквой Фи.

Фазовый сдвиг, например, между напряжениями на проводах трехфазной сети переменного тока относительно друг друга является константой и равен 120 градусов или 2*пи/3 радиан.

Источник

Оцените статью
Adblock
detector