Как определить параметры реле

Электромагнитное реле

Устройство, обозначение и параметры реле

Для управления различными исполнительными устройствами, коммутации цепей, управления приборами в электронике активно применяется электромагнитное реле.

Устройство реле достаточно просто. Его основой является катушка, состоящая из большого количества витков изолированного провода.

Внутрь катушки устанавливается стержень из мягкого железа. В результате получается электромагнит. Также в конструкции реле присутствует якорь.Он закреплён на пружинящем контакте. Сам же пружинящий контакт закреплён на ярме. Вместе со стержнем и якорем ярмо образует магнитопровод.

Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник. Он в свою очередь притягивает якорь. Якорь укреплён на пружинящем контакте. Далее пружинящий контакт замыкается с другим неподвижным контактом. В зависимости от конструкции реле, якорь может по-разному механически управлять контактами.

Устройство реле.

В большинстве случаев реле монтируется в защитном корпусе. Он может быть как металлическим, так и пластмассовым. Рассмотрим устройство реле более наглядно, на примере импортного электромагнитного реле Bestar. Взглянем на то, что внутри этого реле.

Вот реле без защитного корпуса. Как видим, реле имеет катушку, стержень, пружинящий контакт, на котором закреплен якорь, а также исполнительные контакты.

На принципиальных схемах электромагнитное реле обозначается следующим образом.

Условное обозначение реле на схеме состоит как бы из двух частей. Одна часть (К1) – это условное обозначение электромагнитной катушки. Она обозначается в виде прямоугольника с двумя выводами. Вторая часть (К1.1; К1.2) – это группы контактов, которыми управляет реле. В зависимости от своей сложности реле может иметь достаточно большое количество коммутируемых контактов. Они разбиваются на группы. Как видим, на обозначении изображены две группы контактов (К1.1 и К1.2).

Как работает реле?

Принцип работы реле наглядно иллюстрирует следующая схема. Есть управляющая цепь. Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1. Также есть исполнительная цепь, которым управляет реле. Исполнительная цепь состоит из нагрузки HL1 (лампа сигнальная), контактов реле K1.1 и батареи питания G2. Нагрузкой может быть, например, электрическая лампа или электродвигатель. В данном случае в качестве нагрузки используется сигнальная лампа HL1.

Как только мы замкнём управляющую цепь выключателем SA1, ток от батареи питания G1 поступит на реле K1. Реле сработает, и его контакты K1.1 замкнут исполнительную цепь. На нагрузку поступит напряжение питания от батареи G2 и лампа HL1 засветится. Если разомкнуть цепь выключателем SA1, то с реле K1 будет снято напряжение питания и контакты реле K1.1 вновь разомкнуться и лампа HL1 выключится.

Коммутируемые контакты реле могут иметь своё конструктивное исполнение. Так, например, различают нормально-разомкнутые контакты, нормально-замкнутые контакты и контакты на переключение (перекидные). Разберёмся с этим поподробнее.

Нормально разомкнутые контакты

Нормально разомкнутые контакты – это контакты реле, которые находятся в разомкнутом состоянии до тех пор, пока через катушку реле не потечёт ток. Говоря проще, когда реле выключено, контакты тоже разомкнуты. На схемах реле с нормально-разомкнутыми контактами обозначается вот так.

Нормально замкнутые контакты

Нормально замкнутые контакты – это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. Таким образом, получается, что при выключенном реле контакты замкнуты. Такие контакты на схемах изображают следующим образом.

Читайте также:  Как завести машину без втягивающего реле стартера ваз

Переключающиеся контакты

Переключающиеся контакты – это комбинация из нормально-замкнутых и нормально-разомкнутых контактов. У переключающихся контактов есть общий провод, который переключается с одного контакта на другой.

Современные широко распространённые реле, как правило, имеют переключающиеся контакты, но могут встречаться и реле, которые имеют в своём составе только нормально-разомкнутые контакты.

У импортных реле нормально-разомкнутые контакты реле обозначаются сокращением N.O. А нормально-замкнутые контакты N.C. Общий контакт реле имеет сокращение COM. (от слова common – «общий»).

Теперь обратимся к параметрам электромагнитных реле.

Параметры электромагнитных реле.

Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. В качестве примера, рассмотрим импортное реле Bestar BS-115C. На его корпусе нанесены следующие надписи.

COIL 12VDC – это номинальное напряжение срабатывания реле (12V). Поскольку это реле постоянного тока, то указано сокращённое обозначение постоянного напряжения (сокращение DC обозначает постоянный ток/напряжение). Английское слово COIL переводится как «катушка», «соленоид». Оно указывает на то, что сокращение 12VDC имеет отношение к катушке реле.

Далее на реле указаны электрические параметры его контактов. Понятно, что мощность контактов реле может быть разная. Это зависит как от габаритных размеров контактов, так и от используемых материалов. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если нагрузка потребляет мощность больше той, на которую рассчитаны контакты реле, то они будут нагреваться, искрить, «залипать». Естественно, это приведёт к скорому выходу из строя контактов реле.

Для реле, как правило, указываются параметры переменного и постоянного тока, которые способны выдержать контакты.

Так, например, контакты реле Bestar BS-115C способны коммутировать переменный ток в 12А и напряжение 120V. Эти параметры зашифрованы в надписи 12А 120VAC (сокращение AC обозначает переменный ток).

Также реле способно коммутировать постоянный ток силой 10А и напряжением 28V. Об этом свидетельствует надпись 10A 28VDC. Это были силовые характеристики реле, точнее его контактов.

Потребляемая мощность реле.

Теперь обратимся к мощности, которую потребляет реле. Как известно, мощность постоянного тока равна произведению напряжения (U) на ток (I): P=U*I. Возьмём значения номинального напряжения срабатывания (12V) и потребляемого тока (30 mA) реле Bestar BS-115C и получим его потребляемую мощность (англ. — Power consumption).

Таким образом, мощность реле Bestar BS-115C составляет 360 милливатт (mW).

Есть ещё один параметр – это чувствительность реле. По своей сути, это и есть мощность потребления реле во включённом состоянии. Понятно, что реле, которому требуется меньше мощности для срабатывания, является более чувствительным по сравнению с теми, которые потребляют большую мощность. Такой параметр, как чувствительность реле, особенно важен для устройств с автономным питанием, так как включенное реле расходует заряд батарей. К примеру, есть два реле с потребляемой мощностью 200 mW и 360 mW. Таким образом, реле мощностью 200 mW обладает большей чувствительностью, чем реле мощностью 360 mW.

Как проверить реле?

Электромагнитное реле можно проверить обычным мультиметром в режиме омметра. Так как обмотка катушки реле обладает активным сопротивлением, то его можно легко измерить. Сопротивление обмотки реле может варьироваться от нескольких десятков ом (Ω), до нескольких килоом (). Обычно самое низкое сопротивление обмотки имеют миниатюрные реле, которые рассчитаны на номинальное напряжение 3 вольта. У реле, номинальное напряжение которых составляет 48 вольт, сопротивление обмотки намного выше. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BS-115C.

Номинальное напряжение (V, постоянное) Сопротивление обмотки (Ω ±10%) Номинальный ток (mA) Потребляемая мощность (mW)
3 25 120 360
5 70 72
6 100 60
9 225 40
12 400 30
24 1600 15
48 6400 7,5
Читайте также:  Реле 207 вл80с назначение

Отметим, что потребляемая мощность всех типов реле этой серии одинакова и составляет 360 mW.

Электромагнитное реле является электромеханическим прибором. Это, наверное, является самым большим плюсом и в то же время весомым минусом.

При интенсивной эксплуатации любые механические части изнашиваются и приходят в негодность. Кроме этого, контакты мощных реле должны выдерживать огромные токи. Поэтому их покрывают сплавами драгоценных металлов, таких как платина (Pt), серебро (Ag) и золото (Au). Из-за этого качественные реле стоят довольно дорого. Если ваше реле всё-таки вышло из строя, то замену ему можно купить здесь.

К положительным качествам электромагнитных реле можно отнести устойчивость к ложным срабатываниям и электростатическим разрядам.

Источник

Что такое реле. Часть 2. Параметры

Приветствую, друзья!

В первой части статьи мы рассматривали, как устроено электромагнитное реле.

И видели, что оно содержит в себе обмотку с металлическим сердечником, подвижный якорь и контакты.

Мы поняли, зачем оно нужно.

Теперь мы познакомимся с реле ближе и посмотрим на

Параметры реле

Из множества параметров реле мы рассмотрим лишь некоторые, необходимые в практической деятельности. Будем использовать даташит на реле серии 833, чтобы теория была максимально приближена к практике.

Обычно в даташитах параметры реле собраны по группам. Как правило, есть параметры обмотки (Coil Data) и параметры контактов (Сontaсt Data).

Рассмотрим сначала некоторые

Параметры обмотки

Номинальное рабочее напряжение

Каждая модификация отличается количеством витков.

В нашем примере эти напряжения лежат в ряду 3, 4, 5, 6, 9, 12, 24, 36 и 48 Вольт.

Это означает, что один и тот же тип реле можно использовать в широком диапазоне рабочих напряжений.

Соответственно, обмотки, рассчитанные на разные напряжения, имеют разное сопротивление (Coil Resistance), и для их управления требуется различный ток.

Из даташита видим, что, чем больше рабочее напряжение обмотки, тем больше ее сопротивление, и тем меньший ток нужен для переключения контактов.

Интересно отметить, что при разном рабочем напряжении обмотка может потреблять одинаковую мощность.

Так, в нашем случае различные модификации обмоток потребляют мощность около 0,36 Вт при работе с напряжениями 5 – 36 В и около 0,45 Вт при работе с напряжением 48 В.

Напряжение срабатывания

Следует отметить, что реле начинает срабатывать при напряжении меньше номинального.

Напряжение, при котором реле срабатывает, называется напряжением срабатывания (Pick Up Voltage). При этом напряжении якорь притягивается к сердечнику таким образом, что переключает контакты.

При внимательно рассмотрении можно увидеть: если на обмотку подать напряжение меньше напряжения срабатывания, якорь приходит в движение, но не настолько, чтобы переключить контакты.

Часто напряжение срабатывания указывают в процентах от номинального напряжения. Так, в нашем примере напряжение срабатывания составляет величину 75% от номинального рабочего напряжения.

Максимальное рабочее напряжение обмотки

Реле будет устойчиво работать и при напряжении обмотки несколько больше номинального. При этом возникают некоторый допустимый перегрев обмотки. Максимальное рабочее напряжение (Maximum Continuous Voltage) также указывается в даташите.

Оно также может указываться в процентах он номинального рабочего напряжения. В нашем примере оно составляет величину 150% от номинального рабочего напряжения.

Иными словами, реле может работать в некотором диапазоне напряжений обмотки. В нашем случае реле, например, с обмоткой 5 В может работать в диапазоне от 3,75 до 7,5 В, а реле с обмоткой 12В — в диапазоне от 9 до 18 В.

Читайте также:  Реле аварийки киа спектра где находится

Напряжение отпускания

Напряжение отпускания (Drop Out Voltage) — это напряжение обмотки, при котором якорь, будучи ранее притянутым, отпускает.

Напряжение отпускания также может указываться в процентах от номинального рабочего напряжения.

В нашем случае оно составляет величину 10% от номинального.

Т.е. если, например, обмотка рассчитана на номинальное напряжение 5 В, то якорь отпустит при снижении напряжения на обмотке до 0,5 В и менее.

Иногда в справочных данных вместо напряжений срабатывания и отпускания указывают токи срабатывания и отпускания.

Обратите внимание: напряжение срабатывания и напряжение отпускания сильно отличаются!

Иными словами, для удержания реле во включенном состоянии требуется существенно меньше энергии, чем для перевода реле из выключенного состояния во включенное.

Для уменьшения потребляемой от источника питания энергии можно после срабатывания реле уменьшить напряжения на его обмотке до величины, большей напряжения отпускания.

Параметры контактов

Сопротивление контактов

Переходное сопротивление замкнутого контакта (Contact Resistance) обычно не превышает 100 мОм (миллиом).

Помните, мы рассматривали полевой транзистор как аналог реле?

Так вот, сопротивление канала мощного полевого транзистора может быть на порядки меньше — сотые и тысячные доли Ома.

Чем меньше сопротивление, тем меньше греется контакт (или канал полевого транзистора).

Напомним, что контакты реле покрывают специальными сплавами. В нашем случае это сплав серебра и оксида олова (AgSnO), обладающий высокой температурой плавления и устойчивостью к сварке и электрической эрозии при коммутации сильноточных и индуктивных нагрузок.

Следует отметить, что коммутация индуктивных нагрузок (что и происходит в ИБП) – это самый тяжелый режим для контактов реле. При этом между ними может возникнуть электрическая дуга, что сильно сокращает срок их службы.

В даташите обязательно оговаривается величина коммутируемого контактами максимального тока (Contact Rating).

Время срабатывания

Время срабатывания (Operate Time) — это время, за которое реле переходит из состояния «выключено» в состояние «включено». Для разных типов реле этот параметр лежит в пределах примерно от 1 до 200 миллисекунд.

Время срабатывания определяется конструкцией механической части реле — массой якоря и упругостью его пружины.

В нашем случае время срабатывания не превышает 10 мс.

Время отпускания

Время отпускания реле (Release Time) – это время, за которое оно переходит из состояния «включено» в состояние «выключено».

Обратите внимание: как правило, время отпускания (кроме специальных случаев) меньше времени срабатывания.

В нашем случае оно составляет величину не более 5 мс.

Если внимательно рассмотреть графики, приведенные в даташите, то можно увидеть, что временем срабатывания можно в некоторой степени управлять, меняя напряжение на обмотке.

Так, для напряжения 75% от номинального, время срабатывания будет иметь величину примерно 10 мс, при номинальном напряжении – около 5,5 мс, а при максимальном рабочем напряжении – около 3,5 мс.

Интересно отметить, что при этом напряжение отпускания почти не изменяется.

Ресурс контактов

В завершение упомянем о ресурсе контактов реле (Life Expectancy).

В справочных данных могут приводиться отдельные значения для количества срабатываний контактов как механической системы (Life Expectancy Mechanical) и как электрической системы (Life Expectancy Electrical).

В нашем случае это, соответственно, 10 000 000 и 100 000.

В общем случае, ресурс реле определяется, естественно, меньшей цифрой.

Но следует отметить, что цифра 100 000 «электрических» срабатываний приведена для максимальных токов.

Если посмотреть на график, то можно убедиться, что при коммутации малых токов эта цифра будет существенно больше.

А если превысить коммутируемые токи, то цифра будет существенно меньше :))

Реле — в целом штука весьма надежная, но нужно использовать его разумно.

Источник

Оцените статью
Adblock
detector