Как работает корректор напряжения

Корректор напряжения

Корректор напряжения на полупроводниках является релейно-импульс­ным регулятором напряжения на тиристоре (рис. 1.2). На вход корректора (на клеммы 1, 3) с выхода генератора подается напряжение через трансформатор напряже­ния и выпрямитель. Затем это напряжение через Г-образный ФНЧ ( С3, R2) поступает на делитель напряжения

( R1, R7, RP1, RP2). Когда напряжение, снимаемое с делителя, достигнет напряжения пробоя стабилитрона, стабилитрон пробьет­ся и откроется транзистор VT1. Падение напряжения на резисторе R8 откроет транзистор VT2. На управляющем электроде тринистора VS появится поло­жительный потенциал относительно катода за счет падения напряжения на ре­зисторе R12. Тринистор откроется и подаст питание на обмотку управления дросселя отбора. Обмотка управления подсоединена к клеммам 4 и 5. Чем больше напряжение на выходе генератора, тем раньше пробьется стабили­трон и тем больше будет ток в обмотке управления.

Напряжение, снимаемое с делителя, через ФНЧ С1-R3, конденсатор С2 и потенциометр R14 поступает на обмотку возбуждения генератора, подсоеди­ненную к клеммам 1 и 2. По этой цепочке осуществляется гибкая отрицательная обратная связь, которая позволяет бороться с перерегулирова­нием в замкнутой САР и повышает качество переходного процесса.

Потенциометры RP1 и RP2 подсоединены к трансформатору параллель­ной работы (ТПР). Сигнал, снимаемый с этих потенциометров, пропорциона­лен току нагрузки генератора. Поэтому положение движка потенциометра бу­дет влиять на статизм характеристики АРН. Выравнивание статизма парал­лельно работающих генераторов необходимо для того, чтобы реактивная на­грузка между генераторами распределялась поровну или пропорционально их номинальной мощности.

При автономной работе генератора цепь вторичной обмотки ТПР шунтируется и генератор выходит на самую жесткую характе­ристику. С помощью резистора R1 можно изменять уставку генератора, с помо­щью резистора R14 – коэффициент обратной связи. Диод VD1 не допускает встречную полярность на управляющем электроде тринистора, встречная по­лярность вызывает разрушение тринистора. Диод VD6 закорачивает обмотку управления дросселя при изменении полярности на ее входе. Изменение на­правления тока в обмотке управления дросселя вызовет его перемагничива­ние, что приведет к неуправляемым колебаниям напряжения на выходе гене­ратора. Диод VD7 ограничивает встречное напряжение в анодной цепи три­нистора до величины падения напряжения на диоде в прямом включении и тем самым защищает тринистор по анодной цепи от перенапряжения при встречной полярности.

1.3. Автоматический регулятор напряжения генераторов серии МСК завода «Электросила»

Данная система (рис. 1.3) разработана применительно к генераторам с привод­ными высокооборотными дизельными двигателями и паровыми турбинами. В основу АРН положен принцип комбинированного регулятора.

Напряжение поддерживается со статической погрешностью регулирова­ния ±1 % при изменении коэффициента мощности от 0,6 до 1, 0 и колебаниях скорости вращения не более ±2 % в диапазоне нагрузок от 0 до 100 % по отно­шению к номинальным значениям. При параллельной работе в установивших­ся режимах с генераторами разной мощности предусмотрено автомати­ческое распределение реактивных нагрузок с точностью ±10 % от номиналь­ного значения мощности наименее мощного генератора.

При параллельной работе генераторов равномерное распределение реактивных нагрузок осуществляется за счет установки одинакового статизма. Изменение статизма характеристик регулирования напряжения в этой системе преду­смотрено в пределах от 0 до 3 %, изменение уставки – в пределах ±5 % от но­минального напряжения.

Схема включает трансформатор фазового компаундирования с магнит­ным шунтом ТФК, блок силовых выпрямителей VD1…..VD6, корректор на­пряжения КН и блок параллельной работы (добавочное устройство ДУ). Трансформатор ТФК имеет пять обмоток: токовую обмотку LТА , об­мотку напряжения LTV, обмотку питания дросселя отбора LLO, обмотку питания магнитного усилителя и нелинейного узла LA1 и суммирующую обмотку L2. Обмотки LTV и LA1 расположены на общем участке магнитопровода сердечника (до магнитного шунта) и являются обычными обмотками пони­жающего трансформатора. Вторичная обмотка L2 и обмотка LLO расположе­ны на трансформаторе за магнитным шунтом (по отношению к обмотке напря­жения). Обмотка L2 осуществляет питание цепи возбуждения генера­тора, а обмотка LA1 – питание магнитного усилителя и нелинейного узла кор­ректора напряжения. Обмотка LLO с подключенными к ней блоком конденса­торов и дросселем LO обеспечивает надежное самовозбуждение генератора и корректирующее воздействие при отклонениях напряжения.

Самовозбуждение синхронного генератора при холостом ходе произво­дится за счет остаточного подмагничивания. Однако ввиду небольшого значе­ния остаточного напряжения сила тока в цепи обмотки напряжения при срав­нительно большом ее сопротивлении мала и может оказаться недостаточной для самовозбуждения генератора.

Надежное самовозбуждение обеспечивается резонансным контуром, обра­зуемым емкостью конденсаторов С1 и индуктивным сопротивлением об­мотки трансформатора ТФК. Индуктивное сопротивление можно менять путем изменения зазора между магнитным шунтом и сердечником ТФК.

Читайте также:  Как понизить напряжение процессора phenom x4 955 125

Контур настраивается на резонансную частоту, равную 70-80 % от номинальной часто­ты напряжения на выходе генератора. Внешней нагрузкой на этот контур яв­ляется обмотка возбуждения генератора. При достижении генератором резонансной частоты ток в контуре, а, сле­довательно, и в обмотке L2 резко возрастает, благодаря чему напряжение в обмотке возбуждения генератора становится достаточным для надежного са­мовозбуждения. После достижения номинального напряжения генератора вступает в действие корректор напряжения.

Разомкнутый контур регулирования по возмущению выполнен на базе трансформатора фазового компаундирования. В качестве компаундирующего элемента используется магнитный шунт. Магнитный шунт значительно повы­шает магнитную проницаемость среды, в которой находится обмотка напря­жения ТФК, что приводит к увеличению индуктивного сопротивления этой обмотки. Благодаря этому ток в этой обмотке отстает от напряжения на угол, близкий к 90 0 , что обеспечивает увеличение суммарного магнитного потока в ТФК и, следовательно, тока возбуждения генератора при уменьше­нии коэффициента мощности генератора, т.е. выполняется принцип фазового компаундирования.

Замкнутый контур регулирования по отклонению напряжения выполнен на базе корректора напряжения КН. который содержит из­мерительное устройство, магнитный усилитель, дроссель отбора L0. При ма­лых напряжениях генератора магнитный усилитель А1 независимо от величины тока управления не работает, так как напряжение на рабочих обмотках также мало. Только при напряжении, равном 0,8…0,9 номинального значения, усилитель А1 вступает в действие. Отсутствие тока в цепи его выхода до указанного мо­мента обеспечивает надежное и быстрое самовозбуждение генератора.

Измерительное устройство корректора напряжения состоит из линейной и нелинейной частей.

В линейную часть входит линейный трансформатор TL1, ток выхода которого пропорционален напряжению генератора, и выпря­митель VD25…VD28. Первичная обмотка трансформатора включена на на­пряжение генератора через регулировочный резистор R1 и дополнительное устройство ДУ. После выпрямителя в цепь включен резистор с переменным сопротивлением R2. ВАХ линейного элемента показана на

рис. 1.4, (кривая 1). Нелинейная часть образована сочетанием линейного TL2 и нелинейного TL3 трансформаторов с выпрямителем VD19…VD24. Такое сочетание позво­ляет получить неизменный ток на выходе цепи этой нелинейной части при ко­лебаниях напряжения в широких пределах.

ВАХ нелинейного элемента пока­зана на рис.1.4, (кривая 2). В состав нелинейного элемента входит также дроссель частотной коррекции LK, обеспечивающий постоянство тока на выходе при изменении частоты. В цепь включены регулировочный резистор R2 и резистор термокомпенсации R8. Токи линейной и нелинейной частей измери­тельного устройства на выходе направлены навстречу друг другу и в обмотке управления магнитного усилителя А1 вычитаются. Зависимость тока в об­мотке управления магнитного усилителя А1 от напряжения на выходе генера­тора показана на рис.1.4 (кривая 3). Точка пересечения кривой 3 с осью напряжения соответствует напряжению уставки на выходе генератора.

При отклонении напряжения на выходе генератора от напряжения уставки появляется ток в обмотке управления магнитного усилителя.

В зависимости от того, в какую сторону отклоняется напряжение от уставки (уменьшается или увеличивается), ток в обмотке управления магнитного усилителя будет иметь разное направ­ление. Усилитель будет либо подмагничиваться, либо размагничиваться, что в итоге скажется на величине тока возбуждения генератора, и при этом произойдет стаби­лизация напряжения. Обмотки LOC1, LOC2 магнитного усилителя осуществляют отрицатель­ную обратную связь по выходу корректора напряжения, что позволяет бороть­ся с автоколебаниями в замкнутой САР и обеспечивать устойчивую работу сис­темы. После приближения к номинальному напряжению на выходе генератора всту­пает в действие корректор напряжения.

Нагрузкой на корректор КН является обмотка управления магнитного усилителя А1. При увеличении напряжения ток в этой обмотке будет возрастать. Магнитная проницаемость сердечника усилителя будет уменьшаться, что приведет к уменьшению индуктивного со­противления рабочих обмоток усилителя и увеличению его выходного тока. Магнитный усилитель в свою очередь через выпрямитель VD13…VD18 пи­тает обмотку управления дросселя отбора L0, ток в которой, в связи с этим, возрастает. Это приводит к уменьшению магнитной проницаемости сердечника дросселя от­бора и, следовательно, к уменьшению индуктивного сопротивления рабочих обмоток дросселя. Рабочие обмотки дросселя включены последовательно с обмоткой LLO в ТФК. Поэтому при уменьшении сопротивлений рабочих об­моток дросселя ток в обмотке LLO ТФК увеличится. Обмотка LLO в ТФК намо­тана так, что ее магнитный поток направлен встречно по отношению к маг­нитным потокам обмоток LTV и LTA, т.е. она размагничивает ТФК. Следова­тельно, при увеличении магнитного потока обмотки LLO суммарный магнит­ный поток ТФК будет уменьшаться, что приведет к уменьшению тока возбу­ждения генератора и к стабилизации напряжения на его зажимах.

При умень­шении напряжения на выходе генератора описанный процесс будет проходить в противоположном направлении. Уменьшение напряжения генератора вызо­вет увеличение тока возбуждения, благодаря чему будет восстановлено номи­нальное напряжение генератора.

Читайте также:  Напряжения от температурных деформаций

У дросселя отбора одна и та же обмотка является одновременно рабо­чей обмоткой, и обмоткой управления. Изменение уставки работы генератора можно выполнить с помощью рези­стора R3, изменение статизма – с помощью резистора R2 в блоке ДУ, изменение коэффициента отрицательной обратной связи – с помощью резистора R4.

Источник

Устройства регулирования напряжения на ДЭС

Устройства регулирования напряжения на дизельных электростанциях. Принципиальная схема дизель-генератора АД-20М. Угольный регулятор напряжения

Одним из основных требований потребителей к качеству электроэнергии является стабильность напряжения на шинах ДЭС в условиях изменения значения и характера (cosφ) нагрузки станции. При переходе от одного режима нагрузки ДЭС к другому напряжение на шинах ДЭС будет оставаться неизменным, если ток возбуждения генератора будет изменяться в соответствии с изменением нагрузки.

Поддержание стабильного напряжения генераторов дизельной электростанции (ДЭС) осуществляется устройствами (блоками) регулирования напряжения. Автоматические регуляторы напряжения по конструкции регулирующего органа подразделяются на два типа: электромеханические и электромагнитные.

Электромеханические регуляторы состоят из подвижных частей (электромагнитов с подвижными якорями, пружин и др.) и воздействуют на ток возбуждения с помощью изменения активного сопротивления цепи обмотки возбуждения. К этому виду относятся угольные регуляторы, которые совместно с другой аппаратурой (трансформаторами, выпрямителями и другими деталями) входят в блок регулирования напряжения (БРН). На генераторах с машинным возбуждением серий ДГС и ПС-93-4 устанавливаются блоки БРН с угольными регуляторами возбуждения.

Электромагнитные регуляторы состоят из статических (неподвижных) частей (трансформаторов, магнитных усилителей, конденсаторов, реакторов и др.) и изменяют ток возбуждения генератора с помощью дополнительного тока от регулятора обмотки возбуждения. К этому виду регуляторов относятся компаундирующие устройства с электромагнитной коррекцией, с магнитными усилителями и др.

На генераторах серии ЕСС устанавливают БРН, выполненные на принципе компаундирования, а для увеличения точности регулирования используется электромагнитный корректор напряжения.

На генераторах серий ДГФ и ГСФ БРН выполнен на принципе фазового компаундирования с полупроводниковым корректором напряжения.

На генераторах серии СГД устанавливают регуляторы напряжения типа РНА-60, работающие на принципе фазового компаундирования с управлением от электромагнитного корректора напряжения.

Блок БРН с угольным регулятором имеет четыре исполнения: 412, 421, 422, 423. Устройство и принцип работы всех блоков БРН одинаков.

Блок БРН состоит из угольного регулятора УРН, трансформатора регулятора напряжения Тр2, стабилизующего трансформатора Тр1, селеновых выпрямителей ВС1 и ВС2, конденсаторов С1, С2 и резисторов R3, R4, R5. Все элементы БРН укреплены на каркасе и закрыты съемным кожухом.

Угольный регулятор напряжения типа УРН представляет собой прямоходовой электромеханический регулятор реостатного типа.

Рис.1. Угольный регулятор напряжения типа УРН-423.
а — общий вид; б — продольный разрез;
1 — слюдяные прокладки; 2 — фарфоровая втулка; 3,12,22,29 — винты;
4 — скоба; 5 — нажимный винт; 6 — стопорный винт;
7 — неподвижный угольный контакт; 8 — корпус регулятора;
9 — керамическая (фарфоровая) трубка; 10 — угольный столб;
11 — подвижный угольный контакт; 13 — колпак;
14 — контактная пластина; 15 — пластина для магнитопровода;
19 — стопорный винт сердечника; 20 — сердечник;
21 — основание магнитопровода; 23 — обмотка электромагнита;
24 — диамагнитная шайба; 25 — опорное коническое кольцо;
26 — пакеты пружин; 27 — якорь; 28 — пластина для крепления пружин;
30 — плунжер; 31 — амортизатор.

Регулятор типа УРН (рис.1) состоит из электромагнита с сердечником, якоря подвижной системы регулятора, над которым расположены пакеты пружин, угольных столбов, помещенных в фарфоровую трубку, расположенную на корпусе регулятора, неподвижного и подвижного угольных контактов, к которым подключены проводники.

Угольный столб 10, набранный из шероховатых отдельных шайб, включен с помощью контактов 7 и 11 в цепь обмотки возбуждения возбудителя. На угольный столб действует пружина 26, сжимающая угольные шайбы столба, и якорь 27, противодействующий сжатию пружины. Общая площадь соприкосновения угольных шайб столба, а следовательно, и его сопротивление зависят от давления, поэтому разность этих двух сил определяет сопротивление цепи обмотки возбуждения возбудителя.

При номинальном напряжении генератора подвижная система угольного регулятора находится в равновесии (усилия якоря электромагнита и пружины, сжимающей шайбы угольного столба УРН, равны). При увеличении нагрузки генератора напряжение на его выводах уменьшится, в связи с этим уменьшится ток в обмотке электромагнита УРН. Под действием пружины 26 подвижная система УРН сместится, что вызовет сжатие угольного столба и изменение (уменьшение) его сопротивления.

Читайте также:  Разрядка напряжений в рельсовых плетях технология работ

Уменьшение сопротивления приведет к увеличению тока в обмотках возбуждения возбудителя и генератора, напряжение на выводах генератора увеличится. При повышении напряжения генератора, вызванного сбросом нагрузки, сопротивление угольного столба Ур увеличится, а напряжение на выводах генератора уменьшится.

Рис.2. Принципиальная схема БРН генератора с угольным регулятором УРН.
Г — генератор; В — возбудитель;
ОВГ — обмотка возбуждения генератора;
ОВВ — обмотка возбуждения возбудителя.

Обмотка электромагнита УРН (рис.2) включена на напряжение генератора через понижающий трансформатор Тр2 и выпрямитель ВС1. Конденсаторы C1 и С2 установлены для сглаживания пульсаций выпрямленного напряжения выпрямителя ВС1.

Последовательно с первичной обмоткой Тр2 включен резистор R5, служащий для компенсации температурного изменения сопротивления обмотки Тр2.

Реостат установки РУ включен в цепь вторичной обмотки Тр2 для установки уровня автоматического peгулирования напряжения. Угольный столб УРН и резистор R3 включены последовательно в цепь обмотки возбуждения возбудителя. Резистор R3 служит для уменьшения мощности рассеивания в угольном столбе УРН. Стабилизирующий трансформатор Тр1 служит для устранения неустановившихся колебаний напряжения генератора, возникающих при работе УРН. Первичная обмотка трансформатора Тр1 включена через сопротивление R4 на напряжение якоря возбудителя, а вторичная — последовательно в цепь электромагнита УРН. Параллельно обмотке возбуждения возбудителя подключен выпрямитель ВС2 для предохранения угольного столба УРН от подгара при перенапряжениях на зажимах обмотки возбуждения возбудителя.

При уменьшении напряжения генератора напряжение на первичной и вторичной обмотках трансформатора Тр2 понизится, что вызовет уменьшение тока в цепи электромагнита УРН и сопротивления угольного столба УРН.

Использование схемы компаундирования обеспечивает точность поддержания напряжения ±5%, а применение электромагнитного корректора увеличивает точное поддержания напряжения до ±2%.

Блок регулирования напряжения с электромагнитным корректором состоит из блока компаундирования, установленного на генераторе, и блока электромагнитного корректора.

Рис.3. Принципиальная схема дизель-генератора АД-20М

На рис.3 изображена принципиальная схема регулятора напряжения с электромагнитным корректором.

В регуляторе использован принцип фазовою компаундирования и применены три однофазных четырехобмоточных трансформатора ТТП с подмагничиванием от корректора напряжения. Одна из первичных обмоток ТТП включена последовательно с нагрузкой генератора, а другая — через линейный реактор Р параллельно нагрузке. Вторичная обмотка ТТП через выпрямитель СВ1 соединена с обмоткой возбудителя генератора.

Корректор напряжения состоит из автотрансформатора АТН, магнитного усилителя МУ и измерительного органа, имеющего нелинейный реактор НР, линейный реактор ЛP и конденсатор С2.

Небольшое увеличение напряжения на выводах генератора приводит к резкому увеличению тока реактора НР, который увеличивает ток в обмотке управления МУ. Возросший выходной ток МУ проходит через выпрямитель СВ2 и подается на обмотку подмагничивания трансформатора ТТП. Увеличение тока в обмотке подмагничивания вызовет уменьшение тока во вторичной обмотке ТТП и в обмотке возбуждения генератора, что приведет к уменьшению напряжения на выводах генератора.

При уменьшении напряжения на зажимах генератора наблюдается обратная картина. На дизель-генераторах кроме напряжения часто меняется и частота, поэтому в корректоре предусмотрена частотная компенсация.

В схеме корректора частотная компенсация осуществляется реактором ЛР и конденсатором С2, которые изменяют напряжение на реакторе ИР пропорционально изменению частоты генератора и оставляют ток HP неизменным. Эта схема обеспечивает независимость тока HP от изменения частоты и позволяет при изменении частоты от 48 до 52 Гц обеспечить изменение напряжения генератора в пределах ±2%.

Блок регулирования напряжения с полупроводниковым корректором напряжения. Полупроводниковый корректор напряжения в БРН предназначен для поддержания стабильного напряжения на выводах генератора в пределах ±2%.

Рис.4. Принципиальная схема полупроводникового корректора напряжения

Корректор напряжения (рис.4) собран на полупроводниковых элементах и работает в импульсном режиме. Он состоит из измерительного органа и усилителя.

Измерительный орган корректора измеряет напряжение на зажимах генератора и сравнивает его с заданным. Разность между действительным и заданным напряжениями служит сигналом, который управляет полупроводниковым усилителем, соединенным с обмоткой управления трансформатора компаундирования.

Измерительный орган состоит из трансформатора ТИ, первичная обмотка которого подключена на линейное напряжение генератора через резистор R15 и регулируемый резистор РУН, выпрямителя В1, кремниевого опорного диода В2, конденсаторов С1-С2, резисторов R1, R2, R3, R5, R6, терморезисторов R7-R9, транзистора Т1.

Напряжение генератора после выпрямителя В2 и сглаживающего фильтра R8-С1 поступает на вход транзистора Т1. Входной сигнал Т1 будет тем больше, чем больше напряжение генератора превышает опорное напряжение диода В2, т.е. измерительный орган корректора преобразует превышение напряжения генератора над опорным напряжением В2 в выходной ток транзистора Т1, поступающий на вход усилителя. Если Uг

Источник

Оцените статью
Adblock
detector